

Checking Model Specifications with CrossCheck™

Jonathan Springer James Ezick

Reservoir Labs

632 Broadway, #803 New York, NY 10012 (212) 780-0527 springer@reservoir.com ezick@reservoir.com

Matthew Craven Rick Buskens

Lockheed Martin ATL

3 Executive Campus Cherry Hill, NJ 08002 (856) 792-9019 matthew.craven@Imco.com rick.buskens@Imco.com

Thanks to Dr. James Hill, Indiana University/Purdue University at Indianapolis for assistance with the CUTS model simulation framework

Unclassified, DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. This material is based upon works supported by the Department of Defense under contract numbers FA8750-06-C-0133 and FA8750-07-C-0049. Any opinions, findings and conclusions expressed in this material are those of Reservoir Labs, and do not necessarily reflect the views of the Department of Defense.

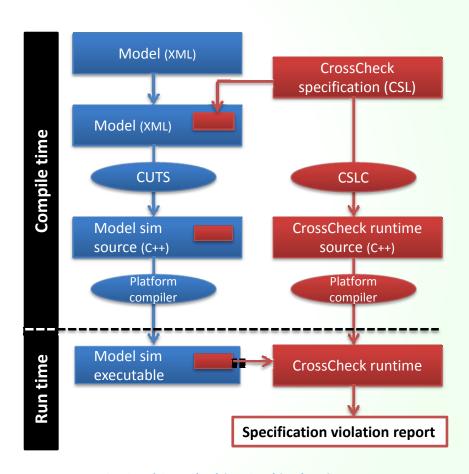
Copyright © 2009 Reservoir Labs, Inc.

Dynamic Specification Checking for Model-based Development

- Why: Model-based simulation allows early validation of designs
 - Complex system is modeled as a collection of interacting components
 - Behavior of system can be simulated and examined prior to implementation
 - Reduces iterations in design-implement-test cycle
- Problem: How to evaluate simulation driven by model framework?
 - Need to be able to check that design specifications hold during the simulation
- What: Applied <u>CrossCheck</u> to <u>CUTS</u>: a model simulation framework
 - Took example avionics problem from the SPRUCE project and created a model
 - Wrote CrossCheck specifications for message rates in the model
- Result: CrossCheck verified message rates in simulation runs

Instrumenting CUTS with CrossCheck

CUTS Simulation framework

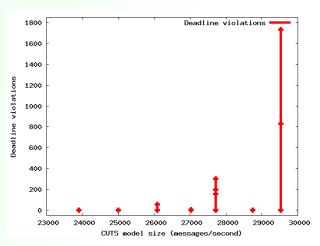

- Model created in XML (GUI-aided)
- Compiled via CUTS to C++
- Compiled to simulation executable

Instrument with CrossCheck

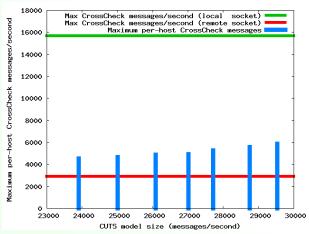
- Specification written in CrossCheck specification language (CSL)
- Added to model via reusable CrossCheck component

Simulation sends events to CrossCheck to check

- Works over the network
- CrossCheck runtime reports on specification violations



CUTS and CrossCheck in a Combined Environment



Results and Conclusions

Number of deadline violations given SPRUCE CUTS model size in term of messages exchanged per second

Maximum rate of CrossCheck messages sent per-host

- As model size increases, increased messages-per-s leads to deadline violations (left, top)
 - Violations reported by CrossCheck
- Using multiple CrossCheck engine instances allows scaling with model size (left, bottom)
- Reusable connector component helps model builder add CrossCheck event feed
 - Uses standard CUTS model-building tools (GME, GAME)
- → CrossCheck is a useful adjunct to model-based simulation

