
CrossCheck Simulation Results

Conclusions

References

Model Instrumentation

Modeling with CUTS

Property Specification

SPRUCE Challenge Problem

Checking Model Specifications with CrossCheck™

• Through CSL, CrossCheck provides a mechanism to specify important
properties of the SPRUCE CUTS simulation model

• Integrating CrossCheck with CUTS is straightforward and relies upon
components with well-defined interfaces that can be reused in any CUTS model

• As the CUTS model size increases, the number of messages exchanged per
second increases, leading to message deadline violations in some simulation runs.
CrossCheck correctly detects and reports these violations to indicate
whether or not the simulation was successful (Figure 1)

• By including a CrossCheck Runtime instance on each simulation node, there
is more than ample processing capability for the SPRUCE CUTS model.
CrossCheck is suitable for the verification of models with high per-second
message rates such as the SPRUCE CUTS multiprocessor avionics model
(Figure 2)

Problem: It is difficult to verify the behavior of a complex design prior
to implementation. But design errors can be very costly.

• Model based simulation allows early validation of designs
• CUTS (Component Workload Emulator Utilization Test Suite) is a

model-based tool for emulating systems of components to evaluate
workloads at the design stage [2]

Specifications for the
challenge problem are
written in CSL.
• Check that minimum

message rate is
maintained

CSL describes:
• Event structure
• Sequences of events to

match
• Specific checking actions

in a C-like syntax

The CrossCheck engine
maintains state about the
progress of the simulation.

• SPRUCE: a collaborative workspace hosting challenge problems for
software intensive systems [3]

• Challenge problem: an avionics system specification
• A collection of ~11,000 signals transmitted among ~20 processors
• About 2000 signals are periodic, requiring a minimum rate

• We encoded a model of the signal traffic in CUTS, using GAME
• http://www.sprucecommunity.org

The CrossCheck dynamic specification checker is integrated to
check properties of the simulation as it executes.
• Specifications written in CrossCheck Specification Language (CSL)
• Instrumentation is added to the model to turn model messages into

CrossCheck events
• We created reusable CUTS components that generate

CrossCheck events, easing instrumentation
• Specifications are checked dynamically as the model is simulated

1. J. Springer, J. Ezick, D. Wohlford, M. Craven, and R. Buskens, “CrossCheck: Improving System Confidence
through High-Speed Dynamic Property Checking”, in High Performance Embedded Computing Workshop, Sept.
2008.

2. J. Hill, H. Turner, J. Edmondson, and D. C. Schmidt, “Unit Testing Non-Functional Concerns of Component-based
Distributed Systems,” in Proceedings of the 2nd International Conference on Software Testing, Verification, and
Validation (ICST), Denver, Apr. 2009.

3. P. Lardieri, R. Buskens, W. McKeever, S. Drager, “SPRUCE: A Web Portal for the Collaborative Engineering of
Software Intensive Systems Producibility Challenge Problems and Solutions,” in Proceedings of the 2009 IEEE
Conference on Collaborative Technologies and Systems, Baltimore, May 2009.

Unclassified, Distribution Statement A: Approved for public release; distribution is unlimited. This
material is based upon works supported by the Department of Defense under contract numbers
FA8750-06-C-0133 and FA8750-07-C-0049. Any opinions, findings and conclusions expressed in

this material are those of Reservoir Labs, and do not necessarily reflect the views of the
Department of Defense. Copyright © 2009 Reservoir Labs, Inc.

SBIR funded by Air
Force Research

Laboratory

Model (XML)
CrossCheck

specification (CSL)

Model (XML)

CUTS CSLC

Model sim.
source (C++)

CrossCheck runtime
source (C++)

Platform
compiler

Platform
compiler

Model sim.
executable CrossCheck runtime

Specification violation report

C
om

pi
le

 ti
m

e
R

un
 ti

m
e

Modeling framework Monitoring framework

• CUTS model is described in XML
• Model is created using GME, a GUI editor
• Larger models are created programmatically using the GAME API

• CUTS can “compile” model to code that will simulate it
• Allows behavior to be examined
• Still difficult to analyze this behavior, mine the data

Motivates use of CrossCheck

P17_P21_1(timestamp_ms:uint64);;
P17_P21_2(timestamp_ms:uint64);;
%%
SpruceMsgPred <-
<predicate_p_true>?:<msg_pred_f> ;;

SpruceMsgRateRule := SpruceMsgPred,
group::1,
attr::{oldest_only, rollback},
recover::<rate_sanity_recover_f>,
desc::"Check message rates from model" ;;

%%
DECLARE_PREDICATE_F(msg_pred_f, m, C, s) {
switch (s->type) {
case ET_P17_P21_1:
…
rate = ceil (db_count.u.Uint32 /

(total_time/1000.0));
if (rate < min_rate) {
C = context_update(C, "RATE", rate);
return C; // spec violation

}
…

}
…

}

CrossCheck: a dynamic specification checker [1]
• Specifications defined in terms of events transmitted by application
• Events can be normal application output, or abstractions generated

with code inserted into the application
• CrossCheck checking engine can be remote, over the network

Figure 1: Number of deadline violations given SPRUCE CUTS
model size in term of messages exchanged per second

Figure 2: Maximum rate of CrossCheck messages sent per-host

Example CSL block with embedded C code from a SPRUCE specification

Acknowledgement: Thanks to Dr. James Hill, Department of Computer Science, Indiana
University/Purdue University at Indianapolis for help with the CUTS framework.

Jonathan Springer James Ezick
Reservoir Labs, Inc.

Matthew Craven Rick Buskens
Lockheed Martin

http://www.sprucecommunity.org/

	Slide Number 1

