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Summary1 
Model simulation frameworks are becoming more common 
as a way to evaluate the behavior of a complex system prior 
to its actual implementation. Simulation uncovers design 
errors early, especially important in embedded 
environments where post-development errors are costly to 
fix. While the formalization of a system as a model is 
becoming more systematized, the characterization of its 
behavior is still ad hoc. We have applied our dynamic 
specification checking technology CrossCheck to the CUTS 
[2, 3] model simulation framework as a way of verifying 
properties of interest in a model. 

CrossCheck [1] utilizes a specialized language to express 
specifications, which are properties about the behavior of 
the system under check. CrossCheck specifications are 
compiled to generate a very efficient checking runtime, 
which receives and processes events from the instrumented 
CUTS model environment. By combining CrossCheck with 
the CUTS framework, we were able to develop 
specifications alongside the model that could be 
automatically verified during simulation runs. 

CUTS Model Simulation Framework 
It is difficult to evaluate the viability of an embedded 
system design prior to its actual implementation, and after it 
is implemented, unforseen problems result in very costly 
reimplementation and schedule overruns. CUTS is a model-
based tool for emulating systems of components to evaluate 
workloads at the design stage. In CUTS, a model of the 
system is written, from which a complete simulation 
environment can be created automatically. This model uses 
a collection of related technologies, including domain 
specific modeling languages (DSMLs) and related tools 
(CoSMIC) and CORBA. The model itself, which has an 
XML representation, may be manipulated with a GUI editor 
or generated programmatically. An example view of part of 
a model (for an avionics system, described subsequently) is 
given in Figure 1. 

After the model has been created, the CUTS code generator 
is invoked. This phase examines the model and generates 
C++ code that, when compiled and run, will simulate the 
model. This run takes place in a simulation environment 
which resembles the deployment environment of the system 
being modeled, to the extent practical. 
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Figure 1: Signal processor model component (viewed with the 
GME model editor). 

Instrumentation with CrossCheck 

While CUTS automates the synthesis of the emulation 
environment, checking for most properties of interest must 
be done manually. The simulation itself provides a check 
only on the basic operation of the system. Essentially, 
CUTS provides the means to generate a tremendous amount 
of data about the actions of the system being modeled, but it 
is up to the user to filter or interpret this data. 

One obvious approach to applying CrossCheck to CUTS is 
to modify CUTS to insert calls to CrossCheck in the 
simulation code that it generates. However, this is not ideal 
as it requires a level of indirection to address. CrossCheck 
driver calls are conceptually specific to the model, and 
different models will want to emit different events. Thus it 
would be necessary to develop some abstraction that could 
take a CrossCheck specification together with some 
annotation about where it should be plugged into the model. 

Instead, we opted to apply the strength of the modeling 
environment itself, creating a model component for the 
CrossCheck driver. This CrossCheck model component can 
be hooked up in a user model using regular modeling tools 
(such as GME). To support this usage mode, we added a 
CUTS-aware wrapper to the standard CrossCheck C/C++ 
driver library. This wrapper interfaces between the 
modeling software environment and the CrossCheck driver, 
allowing calls to CrossCheck to be edited into a model from 
within the model development environment. This 
integration architecture is outlined in Figure 2. 

Evaluation 

We applied CrossCheck to a CUTS model of an avionics 
system. This model consists of a collection of 
communicating components, with signal rates and 
processor workloads. This model was developed as a part of 
the SPRUCE project [4], led by Lockheed Martin, and was 
made according to a system specification provided by the 



 

Figure 2: Architecture for integration of CrossCheck and 
CUTS model environment. 

project. The specification defines system components and 
their communications; these components and signals 
represent all high-level flight control operations. The model 
thus serves as a basis for evaluating the viability of the 
flight control design, so that problems such as exceeding 
guaranteed response times can be found early, in time to 
correct the design before costly development is done. 

In the system specification to which the model was written, 
a certain class of signals (communications between 
components) is required to sustain a certain rate (i.e. 
messages per second). We wrote a CrossCheck 
specification to check that particular property of interest; 
Figure 3 shows a representative portion of the specification. 
In this example, the model must transmit signals from one 
model component to another. When the signals arrive at a 
component, they pass through a series of “action” states that 
allow model behavior to be triggered. We added an action 
state that generated a CrossCheck event representing the 
fact that a signal (message) had been received. Thus, 
signals become CrossCheck events, relayed to the 
CrossCheck runtime by the wrapper driver. The runtime 
checks the timestamps on the events, as directed by the 
specification, and together with its knowledge of the history 
of the event traffic (i.e. signals received by the component 
in the model), is able to determine if the specified rate is 
being maintained. If not, it triggers a specification failure. 

We tested our instrumented model in a series of simulation 
runs, and were able to verify the specification property. To 
determine that CrossCheck was able to keep up with the 
simulation, we gradually increased the model message 
frequency from the default of 50Hz up to 500Hz. Running 
with and without CrossCheck, we observed that 
specification checking completed successfully and did not 
affect the simulation rate. CrossCheck response time over 
the runs averaged 350μs. 

 

P17_P21_1(timestamp_ms:uint64);; 
P17_P21_2(timestamp_ms:uint64);; 
%% 
SpruceMsgPred <- 
  <predicate_p_true>?:<msg_pred_f> ;; 
SpruceMsgRateRule := SpruceMsgPred, 
  group::1, 
  attr::{oldest_only, rollback}, 
  recover::<rate_sanity_recover_f>, 
  desc::"Check message rates from model" ;; 
%% 
DECLARE_PREDICATE_F(msg_pred_f, m, C, s) { 
  switch (s->type) { 
    case ET_P17_P21_1: 
      … 
      rate = ceil (db_count.u.Uint32 / 
                  (total_time/1000.0)); 
      if (rate < min_rate) { 
        C = context_update(C, "RATE", rate); 
        return C;  // spec violation 
      } 
      … 
} … } 

Figure 3: Specification extract. 

Conclusions 

A key challenge in embedded system development is 
catching design errors early, to minimize development time 
wasted on unworkable designs. Being able to model the 
system is a powerful tool, but only part of the solution. By 
combining model simulation with specification checking, 
simulation runs can be interpreted more meaningfully. 

In applying a specification checking framework, usability is 
an important and often-neglected consideration. We found 
that by building a reusable wrapper, a model builder could 
easily connect to CrossCheck without any custom coding, 
using the modeling tool environment. 

Writing the Crosscheck specification was straightforward, 
though manual. Future work in this area might focus on 
even tighter integration, creating modeling domain-specific 
tools that build the specifications into the model. 
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