
Checking Model Specifications with CrossCheck
Jonathan Springer, James Ezick Matthew Craven, Rick Buskens

 Reservoir Labs, Inc. Lockheed Martin
 {springer, ezick}@reservoir.com {matthew.craven, rick.buskens}@lmco.com

Summary1
Model simulation frameworks are becoming more common
as a way to evaluate the behavior of a complex system prior
to its actual implementation. Simulation uncovers design
errors early, especially important in embedded
environments where post-development errors are costly to
fix. While the formalization of a system as a model is
becoming more systematized, the characterization of its
behavior is still ad hoc. We have applied our dynamic
specification checking technology CrossCheck to the CUTS
[2, 3] model simulation framework as a way of verifying
properties of interest in a model.

CrossCheck [1] utilizes a specialized language to express
specifications, which are properties about the behavior of
the system under check. CrossCheck specifications are
compiled to generate a very efficient checking runtime,
which receives and processes events from the instrumented
CUTS model environment. By combining CrossCheck with
the CUTS framework, we were able to develop
specifications alongside the model that could be
automatically verified during simulation runs.

CUTS Model Simulation Framework
It is difficult to evaluate the viability of an embedded
system design prior to its actual implementation, and after it
is implemented, unforseen problems result in very costly
reimplementation and schedule overruns. CUTS is a model-
based tool for emulating systems of components to evaluate
workloads at the design stage. In CUTS, a model of the
system is written, from which a complete simulation
environment can be created automatically. This model uses
a collection of related technologies, including domain
specific modeling languages (DSMLs) and related tools
(CoSMIC) and CORBA. The model itself, which has an
XML representation, may be manipulated with a GUI editor
or generated programmatically. An example view of part of
a model (for an avionics system, described subsequently) is
given in Figure 1.

After the model has been created, the CUTS code generator
is invoked. This phase examines the model and generates
C++ code that, when compiled and run, will simulate the
model. This run takes place in a simulation environment
which resembles the deployment environment of the system
being modeled, to the extent practical.

Unclassified, Distribution Statement A: Approved for public release;
distribution is unlimited. This material is based upon works supported by
the Department of Defense under contract numbers FA8750-06-C-0133
and FA8750-07-C-0049. Any opinions, findings and conclusions
expressed in this material are those of Reservoir Labs, and do not
necessarily reflect the views of the Department of Defense. Copyright ©
Reservoir Labs, Inc.

Figure 1: Signal processor model component (viewed with the
GME model editor).

Instrumentation with CrossCheck

While CUTS automates the synthesis of the emulation
environment, checking for most properties of interest must
be done manually. The simulation itself provides a check
only on the basic operation of the system. Essentially,
CUTS provides the means to generate a tremendous amount
of data about the actions of the system being modeled, but it
is up to the user to filter or interpret this data.

One obvious approach to applying CrossCheck to CUTS is
to modify CUTS to insert calls to CrossCheck in the
simulation code that it generates. However, this is not ideal
as it requires a level of indirection to address. CrossCheck
driver calls are conceptually specific to the model, and
different models will want to emit different events. Thus it
would be necessary to develop some abstraction that could
take a CrossCheck specification together with some
annotation about where it should be plugged into the model.

Instead, we opted to apply the strength of the modeling
environment itself, creating a model component for the
CrossCheck driver. This CrossCheck model component can
be hooked up in a user model using regular modeling tools
(such as GME). To support this usage mode, we added a
CUTS-aware wrapper to the standard CrossCheck C/C++
driver library. This wrapper interfaces between the
modeling software environment and the CrossCheck driver,
allowing calls to CrossCheck to be edited into a model from
within the model development environment. This
integration architecture is outlined in Figure 2.

Evaluation

We applied CrossCheck to a CUTS model of an avionics
system. This model consists of a collection of
communicating components, with signal rates and
processor workloads. This model was developed as a part of
the SPRUCE project [4], led by Lockheed Martin, and was
made according to a system specification provided by the

Figure 2: Architecture for integration of CrossCheck and
CUTS model environment.

project. The specification defines system components and
their communications; these components and signals
represent all high-level flight control operations. The model
thus serves as a basis for evaluating the viability of the
flight control design, so that problems such as exceeding
guaranteed response times can be found early, in time to
correct the design before costly development is done.

In the system specification to which the model was written,
a certain class of signals (communications between
components) is required to sustain a certain rate (i.e.
messages per second). We wrote a CrossCheck
specification to check that particular property of interest;
Figure 3 shows a representative portion of the specification.
In this example, the model must transmit signals from one
model component to another. When the signals arrive at a
component, they pass through a series of “action” states that
allow model behavior to be triggered. We added an action
state that generated a CrossCheck event representing the
fact that a signal (message) had been received. Thus,
signals become CrossCheck events, relayed to the
CrossCheck runtime by the wrapper driver. The runtime
checks the timestamps on the events, as directed by the
specification, and together with its knowledge of the history
of the event traffic (i.e. signals received by the component
in the model), is able to determine if the specified rate is
being maintained. If not, it triggers a specification failure.

We tested our instrumented model in a series of simulation
runs, and were able to verify the specification property. To
determine that CrossCheck was able to keep up with the
simulation, we gradually increased the model message
frequency from the default of 50Hz up to 500Hz. Running
with and without CrossCheck, we observed that
specification checking completed successfully and did not
affect the simulation rate. CrossCheck response time over
the runs averaged 350μs.

P17_P21_1(timestamp_ms:uint64);;
P17_P21_2(timestamp_ms:uint64);;
%%
SpruceMsgPred <-
 <predicate_p_true>?:<msg_pred_f> ;;
SpruceMsgRateRule := SpruceMsgPred,
 group::1,
 attr::{oldest_only, rollback},
 recover::<rate_sanity_recover_f>,
 desc::"Check message rates from model" ;;
%%
DECLARE_PREDICATE_F(msg_pred_f, m, C, s) {
 switch (s->type) {
 case ET_P17_P21_1:
 …
 rate = ceil (db_count.u.Uint32 /
 (total_time/1000.0));
 if (rate < min_rate) {
 C = context_update(C, "RATE", rate);
 return C; // spec violation
 }
 …
} … }

Figure 3: Specification extract.

Conclusions

A key challenge in embedded system development is
catching design errors early, to minimize development time
wasted on unworkable designs. Being able to model the
system is a powerful tool, but only part of the solution. By
combining model simulation with specification checking,
simulation runs can be interpreted more meaningfully.

In applying a specification checking framework, usability is
an important and often-neglected consideration. We found
that by building a reusable wrapper, a model builder could
easily connect to CrossCheck without any custom coding,
using the modeling tool environment.

Writing the Crosscheck specification was straightforward,
though manual. Future work in this area might focus on
even tighter integration, creating modeling domain-specific
tools that build the specifications into the model.

References
[1] J. Springer, J. Ezick, D. Wohlford, M. Craven, and R.

Buskens, “CrossCheck: Improving System Confidence
through High-Speed Dynamic Property Checking”, in High
Performance Embedded Computing Workshop, Sept. 2008.

[2] J. Hill, H. Turner, J. Edmondson, and D. C. Schmidt, “Unit
Testing Non-Functional Concerns of Component-based
Distributed Systems,” in Proceedings of the 2nd
International Conference on Software Testing, Verification,
and Validation (ICST), Denver, Apr. 2009.

[3] J. Hill, J. M. Slaby, S. Baker, D. C. Schmidt, “Applying
System Execution Modeling Tools to Evaluate Enterprise
Distributed Real-time and Embedded System QoS,” in
Proceedings of the 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications, Sydney, Aug. 2006.

 [4] P. Lardieri, R. Buskens, W. McKeever, S. Drager,
“SPRUCE: A Web Portal for the Collaborative Engineering
of Software Intensive Systems Producibility Challenge
Problems and Solutions,” in Proceedings of the 2009 IEEE
Conference on Collaborative Technologies and Systems,
Baltimore, May 2009.

