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Introduction 
This paper introduces an approach for automatic 
parallelization of unequally-spaced convolutions on chip 
multiprocessors (CMPs). CMPs are very promising 
candidates for digital processing in signal and image 
systems with high throughput and low power consumption, 
compared to uniprocessor based architectures. As CMPs are 
emerging and evolving in increasing diversity and 
complexity, automated parallelization of digital signal 
processing (DSP) algorithms on CMPs becomes essential in 
embracing, employing and utilizing these architectures in 
high-performance signal and image systems.   

We focus in particular on automatic parallelization of non-
uniform local convolutions (NuCONV) because this 
computation is a key step linking the use of the fast Fourier 
transform (FFT) to the data sampled at unequally-spaced 
locations or with non-uniform sample density. The 
combination of the NuCONV with the FFT is referred to as 
the Non-uniform FFT (NuFFT) [1, 2, 3, 4, 5]. Our approach 
for automatic parallelization of non-uniform convolutions 
consists of three main components: (i) a unified model for 
CMP architectures; (ii) an algorithmic framework for data 
localization, and (iii) a systematic scheme for coupling the 
architectural model and algorithm framework with specific 
data sets and CMP features. 

Diversity in CMP connectivity and capacity  

Chip multiprocessing [7, 8, 9] represent a relatively new 
design and technology paradigm with respect to the 
limitations in design complexity and power consumption of 
current architectures. In this new paradigm, multiple cores 
are connected via an on-chip memory hierarchy (typically 
in the form of multi-level caches) and an on-chip network. 
This technology is presently used by almost all major 
processor manufacturers across different types of systems 
they produce, including personal computers built from 
multicores by Intel and AMD, game consoles such as the 
Sony-Toshiba-IBM Cell in Sony PlayStation 3 and Xenon 
processor in Xbox 360, the graphics processing units 
(GPUs) by NVIDIA and AMD, as well as in various 
embedded systems.  

CMPs differ from one another in core-cache and cache-
cache connectivity, even within those produced by the same 
chip manufacturer. For example, Intel quad-core 
Harpertown has a two-level cache hierarchy with private 
L1s and each pair sharing an L2; Intel quad-core Nehalem 
has a three-level cache hierarchy with private L1 and L2 
caches, and an shared L3; and Intel Dunnington has private 
L1s, shared L2s for each pair of cores, and an L3 at the 

bottom level for all cores. CMPs differ also in core 
processing units (types, issue widths, register 
configurations, etc), on-chip cache capacities, off-chip 
bandwidths and data transfer protocols.  Such diversity is 
expected to be even more pronounced in future CMPs.  

Clearly, in this spectrum of CMPs, porting a parallel 
application from one machine to another is not an easy task, 
if one wants to achieve high performance. Manual 
parallelization and fine-grain performance tuning for each 
target CMP architecture becomes impractical in response to 
the fast pace of architectural advance on one side and the 
demand of timely adapting to and utilizing modern 
architectures on the other side. We characterize the regular 
CMP architectures at a high level by a connectivity-
capacity hierarchy. In its simple form, a cache hierarchy 
can be represented using a tree, with the root standing for 
the off-chip memory, the leaves for the core processing 
units, and the intermediate nodes corresponding to the on-
chip caches in between. In this representation, the nodes 
have capacity attributes and the edges have data transfer 
latency attributes. The tree structure is related to the graph 
for a more complex on-chip network as a spanning tree.   

Non-uniform local convolution 
In NuFFTs [1, 2, 3, 4, 5], a locally supported convolution 
kernel function h (and its Fourier dual H) is chosen for 
accurate and efficient translation of data, via direct 
evaluation, from unequally spaced locations to a Cartesian 
grid, or vice versa. For illustration purposes, we consider 
the case of translating source samples at unequally-spaced 
locations sj to target data at ti on a Cartesian grid that is 
determined together with the kernel function h:  

 
where W is the window size describing the convolution 
support along each dimension. Note that this operation is 
essentially a matrix-vector product with a sparse matrix. 
Under certain assumptions on the data q, the NuFFT may 
be viewed as permitting an arbitrary sample distribution. 
Equation (1) suggests two loops in a program that 
implements NuCONV, with the outer loop going over the 
target indices and the inner loop going over the source 
indices. We swap the positions of these loops for exploiting 
data locality and parallelism, because, for each source point, 
the number of the target points within the window and their 
locations are easy to determine, unlike the other way around. 



Geometric tiling for data localization 

In the irregularly sparse case, the index tiling scheme for 
dense matrix-vector products fails to serve the purpose of 
enhancing data locality and reuse.  Instead, we cluster the 
source data into geometric cells on a Cartesian grid, which 
induces geometric tiling of the convolution matrix in the 
source indices [6]. This source clustering and tiling process 
visits each source data point only once, and it is highly 
parallelizable. Geometric tiling over the target space is 
simply a partitioning of the Cartesian indices along each 
dimension.  Now, the source samples in a source cell update 
the same set of targets in the neighboring target cells. This 
data localization scheme is parameterized with the cell size 
on each of the source and target sides and the ordering in 
which the source cells are visited.  

Automatic data localization and task 
parallelization 
Automatic parallelization of NuCONV with particular 
source-target data sets on a specific CMP involves 
finalizing the cell (or tile) size, tile traversing order, 
scheduling the computation among multicores and 
organizing data accesses for effective use of available on-
chip caches. In other words, this process instantiates and 
attempts to optimize the mapping between the architectural 
model and the algorithmic tiling framework with specific 
input consisting of data sets, algorithmic parameters and 
architectural features.  In particular, the geometric cells may 
be grouped together or split further, in adaptation to the 
target cache hierarchy. The mutual exclusion in updating 
target data is ensured by the zero-overlapping rule in 
concurrent distribution and by the maximal-overlapping 
rule in successive tiles during data traversal. 

Preliminary evaluation  
To evaluate our automated strategy, we performed two sets 
of experiments for the 2D case with 6K×6K source samples 
in the same spatial domain of a 50×50 Cartesian grid. The 
datum at each source sample updates 10×10 targets. The 
first set of experiments study the scalability of the adapted 
parallel convolution when increasing the number of cores in 
three target architectures we have (Harpertown, Nehalem, 
and Dunnington). These results are presented in Figure 1 
and indicate that the performance scales well. Our second 
set of experiments investigates the importance of 
customizing the data localization and parallelization for 
convolution based on the target architecture. The plot in 
Figure 2 shows, for a 4-core configuration, three groups of 
bars, each of which corresponding to an architecture on 
which the code is executed. In each group, the three bars 
represent the performance of the three different versions 
adapted to different architectures. For example, the third 
group of bars corresponds to the performance numbers  
collected when running all the versions on the 4 cores of the 
Harpertown machine. In particular, the first, second, and 
third bars in that group correspond to the parallel 
convolution adapted to Dunnington, Nehalem, and 
Harpertown architectures, respectively. The bars in each 
group are normalized with respect to the version which is 
tailored for the target architecture. The results show that the 
version with customized data localization and 

parallelization for the target architecture has best 
performance on that machine. 
   

Input size 6K×6K, α=1.5, W=10, L=50
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Figure 1: Execution time scalability results on machines of 

three different Intel multi-core architectures. 
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Figure 2: Results showing the importance of adapting parallel 

convolution to the target CMP architecture. 
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