
Automated Parallelization of Non-uniform Convolutions on Chip
Multiprocessors

Y. Zhang1, M. Kandemir1, N. Pitsianis2 and X. Sun2

1Department of Computer Science and Engineering, Pennsylvania State University, PA, 16802, USA
2Department of Computer Science, Duke University, NC, 27708, USA

{yuz123@psu.edu, kandemir@csepsu.edu, Nikos.P.Pitsianis@Duke.edu, xiaobai@cs.duke.edu}

Introduction
This paper introduces an approach for automatic
parallelization of unequally-spaced convolutions on chip
multiprocessors (CMPs). CMPs are very promising
candidates for digital processing in signal and image
systems with high throughput and low power consumption,
compared to uniprocessor based architectures. As CMPs are
emerging and evolving in increasing diversity and
complexity, automated parallelization of digital signal
processing (DSP) algorithms on CMPs becomes essential in
embracing, employing and utilizing these architectures in
high-performance signal and image systems.

We focus in particular on automatic parallelization of non-
uniform local convolutions (NuCONV) because this
computation is a key step linking the use of the fast Fourier
transform (FFT) to the data sampled at unequally-spaced
locations or with non-uniform sample density. The
combination of the NuCONV with the FFT is referred to as
the Non-uniform FFT (NuFFT) [1, 2, 3, 4, 5]. Our approach
for automatic parallelization of non-uniform convolutions
consists of three main components: (i) a unified model for
CMP architectures; (ii) an algorithmic framework for data
localization, and (iii) a systematic scheme for coupling the
architectural model and algorithm framework with specific
data sets and CMP features.

Diversity in CMP connectivity and capacity

Chip multiprocessing [7, 8, 9] represent a relatively new
design and technology paradigm with respect to the
limitations in design complexity and power consumption of
current architectures. In this new paradigm, multiple cores
are connected via an on-chip memory hierarchy (typically
in the form of multi-level caches) and an on-chip network.
This technology is presently used by almost all major
processor manufacturers across different types of systems
they produce, including personal computers built from
multicores by Intel and AMD, game consoles such as the
Sony-Toshiba-IBM Cell in Sony PlayStation 3 and Xenon
processor in Xbox 360, the graphics processing units
(GPUs) by NVIDIA and AMD, as well as in various
embedded systems.

CMPs differ from one another in core-cache and cache-
cache connectivity, even within those produced by the same
chip manufacturer. For example, Intel quad-core
Harpertown has a two-level cache hierarchy with private
L1s and each pair sharing an L2; Intel quad-core Nehalem
has a three-level cache hierarchy with private L1 and L2
caches, and an shared L3; and Intel Dunnington has private
L1s, shared L2s for each pair of cores, and an L3 at the

bottom level for all cores. CMPs differ also in core
processing units (types, issue widths, register
configurations, etc), on-chip cache capacities, off-chip
bandwidths and data transfer protocols. Such diversity is
expected to be even more pronounced in future CMPs.

Clearly, in this spectrum of CMPs, porting a parallel
application from one machine to another is not an easy task,
if one wants to achieve high performance. Manual
parallelization and fine-grain performance tuning for each
target CMP architecture becomes impractical in response to
the fast pace of architectural advance on one side and the
demand of timely adapting to and utilizing modern
architectures on the other side. We characterize the regular
CMP architectures at a high level by a connectivity-
capacity hierarchy. In its simple form, a cache hierarchy
can be represented using a tree, with the root standing for
the off-chip memory, the leaves for the core processing
units, and the intermediate nodes corresponding to the on-
chip caches in between. In this representation, the nodes
have capacity attributes and the edges have data transfer
latency attributes. The tree structure is related to the graph
for a more complex on-chip network as a spanning tree.

Non-uniform local convolution
In NuFFTs [1, 2, 3, 4, 5], a locally supported convolution
kernel function h (and its Fourier dual H) is chosen for
accurate and efficient translation of data, via direct
evaluation, from unequally spaced locations to a Cartesian
grid, or vice versa. For illustration purposes, we consider
the case of translating source samples at unequally-spaced
locations sj to target data at ti on a Cartesian grid that is
determined together with the kernel function h:

where W is the window size describing the convolution
support along each dimension. Note that this operation is
essentially a matrix-vector product with a sparse matrix.
Under certain assumptions on the data q, the NuFFT may
be viewed as permitting an arbitrary sample distribution.
Equation (1) suggests two loops in a program that
implements NuCONV, with the outer loop going over the
target indices and the inner loop going over the source
indices. We swap the positions of these loops for exploiting
data locality and parallelism, because, for each source point,
the number of the target points within the window and their
locations are easy to determine, unlike the other way around.

Geometric tiling for data localization

In the irregularly sparse case, the index tiling scheme for
dense matrix-vector products fails to serve the purpose of
enhancing data locality and reuse. Instead, we cluster the
source data into geometric cells on a Cartesian grid, which
induces geometric tiling of the convolution matrix in the
source indices [6]. This source clustering and tiling process
visits each source data point only once, and it is highly
parallelizable. Geometric tiling over the target space is
simply a partitioning of the Cartesian indices along each
dimension. Now, the source samples in a source cell update
the same set of targets in the neighboring target cells. This
data localization scheme is parameterized with the cell size
on each of the source and target sides and the ordering in
which the source cells are visited.

Automatic data localization and task
parallelization
Automatic parallelization of NuCONV with particular
source-target data sets on a specific CMP involves
finalizing the cell (or tile) size, tile traversing order,
scheduling the computation among multicores and
organizing data accesses for effective use of available on-
chip caches. In other words, this process instantiates and
attempts to optimize the mapping between the architectural
model and the algorithmic tiling framework with specific
input consisting of data sets, algorithmic parameters and
architectural features. In particular, the geometric cells may
be grouped together or split further, in adaptation to the
target cache hierarchy. The mutual exclusion in updating
target data is ensured by the zero-overlapping rule in
concurrent distribution and by the maximal-overlapping
rule in successive tiles during data traversal.

Preliminary evaluation
To evaluate our automated strategy, we performed two sets
of experiments for the 2D case with 6K×6K source samples
in the same spatial domain of a 50×50 Cartesian grid. The
datum at each source sample updates 10×10 targets. The
first set of experiments study the scalability of the adapted
parallel convolution when increasing the number of cores in
three target architectures we have (Harpertown, Nehalem,
and Dunnington). These results are presented in Figure 1
and indicate that the performance scales well. Our second
set of experiments investigates the importance of
customizing the data localization and parallelization for
convolution based on the target architecture. The plot in
Figure 2 shows, for a 4-core configuration, three groups of
bars, each of which corresponding to an architecture on
which the code is executed. In each group, the three bars
represent the performance of the three different versions
adapted to different architectures. For example, the third
group of bars corresponds to the performance numbers
collected when running all the versions on the 4 cores of the
Harpertown machine. In particular, the first, second, and
third bars in that group correspond to the parallel
convolution adapted to Dunnington, Nehalem, and
Harpertown architectures, respectively. The bars in each
group are normalized with respect to the version which is
tailored for the target architecture. The results show that the
version with customized data localization and

parallelization for the target architecture has best
performance on that machine.

Input size 6K×6K, α=1.5, W=10, L=50

0

100

200

300

400

500

600

1core 2cores 4cores 8cores

Number of cores

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Harpertown Nehalem Dunnington

Figure 1: Execution time scalability results on machines of

three different Intel multi-core architectures.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dunnington Machine Nehalem Machine Harpertown Machine

Machine Types

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Dunnington Version Nehalem Version Harpertown Version

Figure 2: Results showing the importance of adapting parallel

convolution to the target CMP architecture.

References
[1] A. Dutt and V. Rokhlin, “Fast Fourier transforms for

nonequispaced data”, SIAM Journal on Scientific Computing,
1993.

[2] D. Potts, “The Nonequispaced FFT: An indispensable
algorithm for applied science", ACM Computing Reviews Hot
Topic, 2008.

[3] D. Potts, G. Steidl, and A. Nieslony, “Fast convolution with
radial kernels at nonequispaced knots”, Numer. Math., 2004.

[4] G. Beylkin, "On the fast Fourier transform of functions with
singularities", Applied and Computational Harmonic
Analysis, 1995.

[5] L. Greengard and J. Lee, “Accelerating the Nonuniform Fast
Fourier transform”, SIAM REVIEW 46(3), 2004.

[6] T.S. Sorensen, T. Schaeffter, K.O. Noe, and M.S., Hansen,
“Accelerating the nonequispaced fast Fourier transform on
commodity graphics hardware”, IEEE Transactions on
Medical Imaging, 2008.

[7] K. Olukotun, L. Hammond, and J. Laudon, “Chip
multiprocessor architecture: techniques to improve
throughput and latency”, 2007.

[8] P. Crowley, M. A. Franklin, J. Buhler and R.D. Chamberlain,
“Impact of CMP design on high-performance embedded
computing”, High Performance Embedded Computing
workshop, 2006.

[9] Y. Li, K. Skadron, Z. Hu and D. Brooks, “Performance,
energy, and thermal considerations for SMT and CMP
architectures”, HPCA-11, 2005.

