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Why Software-Defined Connectivity?

* Modern ISR, COMM, EW * Example: Reactive electronic
systems need to be flexible warfare (EW) system
— Change hardware and — Re-task components as
software in theatre as environmental conditions
conditions change change
— Technological upgrade — Easily add and replace
— Various form factors components as needed

before and during mission

* Want the system to be open

— Underlying architecture
specific enough to reduce
redundant software
development

— General enough to be applied
to a wide range of system
components

E.g., different vendors
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Special Purpose Processor (SPP)
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Mode 1: Hardwired
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* Hardware components physically connected
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* Connections through backplane are fixed (no configuration

management)

* No added latency but inflexible
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Mode 2: Pub-Sub
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* Everything communicates through the middleware

— Hardware components have on-board processors running
proxy processes for data transfer

* Most flexible, but there will be overhead due to the
middleware
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Switch Fabric
FPGA 1l |eeoe FPGAMWRXl eee|] RXR ITX1 |[eee| TXT

* Configuration manager sets up all connections across the
switch fabric

* May still be some co-located hardware, or some hardware
that communicates via a processor through the middleware

®* Overhead only incurred during configuration
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Today’s Presentation
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* TCL middleware developed to support the SPP system
— Essential foundation

* Resource Manager sets up (virtual) connections between
processes
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System Configuration
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e 3 COTS bhoards connected
through VPX backplane

— 1 Single-board computer,
dual-core PowerPC 8641

— 1 board with
and a dual-core 8641

— 1 board with 4 dual-core 8641s
— Processors run VxWorks

* Boards come from same
vendor, but have different board
support packages (BSPs)

* Data transfer technology of
choice: Serial RapidlO (sRIO)

— Low latency important for our
application

* Implement middleware in C++
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System Model
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New components can easily be added by
complying with the middleware API
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Publish/Subscribe Middleware
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Middleware acts as interface to both application and hardware/OS
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Abstract Interfaces to Middleware

O

What data-
transfer
technology am |
using?

How (exactly)
do | execute a
data transfer?

* Middleware must be abstract to be effective
— Middleware developers are unaware of hardware-specific libraries
— Users have to implement functions that are specific to BSPs
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XML Parser
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r Sintch Fabric '

* Resource manager is currently in the form of an XML parser
— XML file defines topics, publishers, and subscribers

— Parser sets up the middleware and defines virtual network
topology

setup.xml |${ Parser }E>
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— DataReader, DataReaderListener and DataWriter

interface with the application
— Builder interfaces with BSPs

* Derive board- and communication-specific classes
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(" #include <math.h> - T T T T S
i Interface
//member functions |
STATUS Builder::performbmaTransfer(...){} [ '[0 BSP
o Builder

U

#include <math_h>

#includeCCVendorpPath/bspDma.h™>

//member functions

STATUS CustomB i e DmaTransfer(...){
return bspDmaTransfer(...);

}

CustomBSP-
Builder

* Follows the Builder pattern in Design Patterns*

* Provides interface for sRIO-specific tasks
— e.g., establish sRIO connections, execute data transfer

* Certain functions are empty (not necessarily virtual) in the
base class, then implemented in the derived class with BSP-

sEecific libraries
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Publishers and Subscribers
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Interface to Application \
\ //member functions

DataReader hasa) DataWriter |I virtual STATUS
{ DataWriter::write(message)=0;

= N

DataReaderlListener

I
I
I
| 5
| % virtual STATUS 1)
— o — SrioDataWriter: :write(message)
| | SrioData- 5 SrioData- {
| Reader = Writer o
l SrioData- I myBui lder->performbDmaxXfer(..);
ReaderListener / ---
\ ’ }
g g g - j

Derived Builder type
determined dynamically

® DataReaders, DataWriters and DataReaderListeners act as
“Directors” of the Builder

— Tell the Builder what to do, Builder determines how to do it

* DataWriter used for publishing, DataReader and DataReaderListener
used by subscribers

* Derived classes implement communication(sRIO)-specific, but not
BSP-specific, functionality

— e.g., ring arecipient’s doorbell after transferring data
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e |nitial Results and Demonstration
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Software-Defined Connectivity
Initial Implementation

* EXxperiment: Process-to-
process data transfer
latency

Set up two topics

Processes use TCL to
send data back and forth

Measure round trip time
with and without
middleware in place

C
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TX T
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<Topic>
<Name>Send</Name>
<ID>0</1D>
<Sources>
<Source>
<SourcelD>8</SourcelD>
</Source>
</Sources>
<Destinations>
<Destination>
<DSTID>0</DSTID>
</Destination>
</Destinations>
</Topic>
<Topic>
<Name>SendBack</Name>
<ID>1</1D>
<Sources>
<Source>
<SourcelD>0</SourcelD>
</Source>
</Sources>
<Destinations>
<Destination>
<DSTID>8</DSTID>
</Destination>
</Destinations>
</Topic>
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Software-Defined Connectivity
Communication Latency

D

Thin Communication Layer Performance Comparison

(7S
o
»

—
o
L4}
T—TT

Bandwidth (MB/s)
o

1024 8192 65536 524288 4194304 1024 8192 65536 524288 4194304

Packet Size (Bvtes) Packet Size (Bytes)
* One-way latency ~23 us for * Reach 95% efficiency at 64
small packet sizes KB
e Latency grows * Overhead is negligible for
proportionally to packet large packets, despite
size for large packets Increasing size
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Demo 1: System Reconfiguration
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Configuration 1: ‘ ‘ ‘ ‘
14

Configuration 2:
- @

Objective: Demonstrate connectivity reconfiguration
by simply replacing the configuration XML file
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I will process this new
information!

I've detected
signals!

Low-latency predefined connections allow quick response
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Demo 2: Resource Management
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| will determine what to
I need more help to transmit in response!
analyze the signals!

Resource manager sets up new connections on demand
to efficiently utilize available computing power
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Demo 2: Resource Management
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I will transmit the
response!

| have determined an
appropriate response!

Proc #1/Transmit are publisher/subscriber on topic TransmitWaveform

MIT Lincoln Laboratory <=

SPP-HPEC09-27
BAM 10/1/2009



3
Y,

Demo 2: Resource Management
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I will transmit the
response!

| have determined an
appropriate response!

After finishing, components may be re-assigned
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* Ongoing Work/Summary
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& Ongoing Work
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Formation
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° Deve'Op the middleware * Automate resource management
(configuration manager) to - Dynamically reconfigure
set up fixed connections system as needs change
— Mode 3: Objective system - Enable more efficient use of

resources (load balancing)
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Summary

K

* Developing software-defined connectivity of hardware and
software components

* Enabling technology: low-latency pub/sub middleware
— Abstract base classes manage connections between nodes

— Application developer implements only system-specific send
and receive code

* Encouraging initial results
— At full sRIO data rate, overhead is negligible

* Working toward automated resource management for
efficient allocation of processing capability, as well as
automated setup of low-latency hardware connections
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