
A Special-Purpose Processor p p
System with Software-Defined

ConnectivityConnectivity
Benjamin Miller, Sara Siegal, James Haupt, Huy Nguyen

and Michael Vaiand Michael Vai

MIT Lincoln Laboratory

22 September 2009

This work is sponsored by the Navy under Air Force Contract FA8721-05-0002. Opinions, interpretations, conclusions

MIT Lincoln Laboratory
SPP-HPEC09-1
BAM 10/1/2009

and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Outline

• Introduction

• System Architecture

• Software ArchitectureSoftware Architecture

• Initial Results and Demonstration

• Ongoing Work/Summary

MIT Lincoln Laboratory
SPP-HPEC09-2
BAM 10/1/2009

Why Software-Defined Connectivity?

• Modern ISR, COMM, EW
systems need to be flexible

• Example: Reactive electronic
warfare (EW) system

– Change hardware and
software in theatre as
conditions change

– Technological upgrade

– Re-task components as
environmental conditions
change

– Easily add and replace g g
– Various form factors

• Want the system to be open

y
components as needed
before and during mission

– Underlying architecture
specific enough to reduce
redundant software
development

– General enough to be applied
to a wide range of system
components

E.g., different vendors

MIT Lincoln Laboratory
SPP-HPEC09-3
BAM 10/1/2009

E.g., different vendors

Special Purpose Processor (SPP)
System

Antenna Interface

tio
n Rx 1

tio
nFPGA 1 Processor 1

T 1
Tx 1

LN
A

R
F

D
is

tr
ib

ut Rx 2

Rx R R
F

D
is

tr
ib

ut

Σ

H
PA

FPGA M

FPGA 2 Processor 2

Processor N

Tx 1

Tx T

• System representative of

Rx R FPGA M Processor N

Switch Fabric
data processing

algorithms
configure
backplane

manage
inter-process

Tx T

System representative of
advanced EW architectures

– RF and programmable
hardware, processors all
connected through a Thin Communications Layer (TCL) Middleware

Config. Mgr. Res. Mgr.
Process P

Process 2Process 1

connections connections

connected through a
switch fabric

Enabling technology: bare-
bone, low-latency pub/sub

Thin Communications Layer (TCL) Middleware

Switch Fabric
Proc. 1 Proc. 2
OS OS

Proc. N
OS

MIT Lincoln Laboratory
SPP-HPEC09-4
BAM 10/1/2009

bone, low latency pub/sub
middleware

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

Mode 1: Hardwired

Config. Mgr. Res. Mgr.
Process P

Process 2Process 1

Thin Communications Layer (TCL) Middleware

Proc. 1 Proc. 2
OS OS

Proc. N
OS

connections to Switch Fabric
FPGA FPGA

T
FPGA FPGA

connections to
hardware fixed

• Hardware components physically connected
• Connections through backplane are fixed (no configuration

t)

RxRx TxTx

MIT Lincoln Laboratory
SPP-HPEC09-5
BAM 10/1/2009

management)
• No added latency but inflexible

Mode 2: Pub-Sub

Process 4

Res. Mgr.
Process 3

Process 2Proxy 1
Process P

Process 2Process 1

Thin Communications Layer (TCL) Middleware

Proc
OSFPGA

Proc Proc
OS FPGA OS

Proc
OS

Rx
FPGA
Tx Proc

OS Rx

• Everything communicates through the middleware

Switch Fabric

– Hardware components have on-board processors running
proxy processes for data transfer

• Most flexible, but there will be overhead due to the
iddl

MIT Lincoln Laboratory
SPP-HPEC09-6
BAM 10/1/2009

middleware

Mode 3: Circuit Switching

Config. Mgr. Res. Mgr.
Process P

Process 2Process 1

Thin Communications Layer (TCL) Middleware

S it h F b i
Proc. 1 Proc. 2
OS OS

Proc. N
OS

C fi i ll i h

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

• Configuration manager sets up all connections across the
switch fabric

• May still be some co-located hardware, or some hardware
that communicates via a processor through the middleware

MIT Lincoln Laboratory
SPP-HPEC09-7
BAM 10/1/2009

that communicates via a processor through the middleware
• Overhead only incurred during configuration

Today’s Presentation

Config. Mgr. Res. Mgr.
Process P

Process 2Process 1

Thin Communications Layer (TCL) Middleware

S it h F b i
Proc. 1 Proc. 2
OS OS

Proc. N
OS

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

• TCL middleware developed to support the SPP system
– Essential foundation

• Resource Manager sets up (virtual) connections between

MIT Lincoln Laboratory
SPP-HPEC09-8
BAM 10/1/2009

processes

Outline

• Introduction

• System Architecture

• Software ArchitectureSoftware Architecture

• Initial Results and Demonstration

• Ongoing Work/Summary

MIT Lincoln Laboratory
SPP-HPEC09-9
BAM 10/1/2009

System Configuration

• 3 COTS boards connected
through VPX backplane

– 1 Single-board computer,
dual-core PowerPC 8641

– 1 board with 2 Xilinx Virtex- 5
FPGAs and a dual-core 8641
1 board with 4 dual core 8641s– 1 board with 4 dual-core 8641s

– Processors run VxWorks
• Boards come from same

vendor, but have different boardvendor, but have different board
support packages (BSPs)

• Data transfer technology of
choice: Serial RapidIO (sRIO)p ()

– Low latency important for our
application

• Implement middleware in C++

MIT Lincoln Laboratory
SPP-HPEC09-10
BAM 10/1/2009

System Model

Application
Components

System Control
Componentsp

Signal Processing Lib

Components

V d

BSP2

Operating System

BSP1 HW (Rx/Tx,
ADC, etc.)

Vendor
Specific

VPX + Serial Rapid I/O
Physical Interface

Operating System
(Realtime: VxWorks; Standard: Linux)VxWorks

MIT Lincoln Laboratory
SPP-HPEC09-11
BAM 10/1/2009

VPX + Serial Rapid I/OVPX + Serial Rapid I/O

System Model

System Control
Components

Application
Components

Signal Processing Lib

Componentsp

V d

TCL Middleware

Operating System

Vendor
Specific BSP1 BSP2 HW (Rx/Tx,

ADC, etc.)

VPX + Serial Rapid I/O

Operating System
(Realtime: VxWorks; Standard: Linux)VxWorks

Physical Interface

MIT Lincoln Laboratory
SPP-HPEC09-12
BAM 10/1/2009

VPX + Serial Rapid I/OVPX + Serial Rapid I/O

System Model
N SW t

Application
Components

Application
Components

System Control
Components

New SW components

TCL Middl

Signal Processing Lib

New HW

BSP1 BSP2 HW (Rx/Tx,
ADC t)

Vendor
Specific

TCL Middleware New HW
components

BSP1 BSP2

Operating System
(Realtime: VxWorks; Standard: Linux)VxWorks

ADC, etc.)

VPX + Serial Rapid I/OVPX + Serial Rapid I/O
Physical Interface

New components can easily be added by

MIT Lincoln Laboratory
SPP-HPEC09-13
BAM 10/1/2009

New components can easily be added by
complying with the middleware API

Outline

• Introduction

• System Architecture

• Software ArchitectureSoftware Architecture

• Initial Results and Demonstration

• Ongoing Work/Summary

MIT Lincoln Laboratory
SPP-HPEC09-14
BAM 10/1/2009

Publish/Subscribe Middleware
s bscribers

Process l1
Process k Process l2

subscribers

Topic T
Publishing
application . . . and the

subscribers are
TCL Middleware

Subscribers

l1
l2

doesn’t need to
know where the
data is going . . .

subscribers are
unconcerned
about where
their data comes
from

send to
application

se se

from

no
tif

y

no
tif

y
OS OSOS

nd to l1

end to l2

Switch
Fabric

Proc. l1 Proc. l2Proc. k
OS OS

MIT Lincoln Laboratory
SPP-HPEC09-15
BAM 10/1/2009

Middleware acts as interface to both application and hardware/OS

Abstract Interfaces to Middleware

interface with application
What data-

TCL Middleware

transfer
technology am I

using? C dd e a e

How (exactly)
do I execute a
data transfer?

• Middleware must be abstract to be effective
– Middleware developers are unaware of hardware-specific libraries
– Users have to implement functions that are specific to BSPs

MIT Lincoln Laboratory
SPP-HPEC09-16
BAM 10/1/2009

Users have to implement functions that are specific to BSPs

XML Parser

Config. Mgr. Res. Mgr.

Process P
Process 2

Process 1

Thin Communications Layer (TCL) Middleware
setup.xml Parser

Proc. 1 Proc. 2
OS OS

Proc. N
OS

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

• Resource manager is currently in the form of an XML parser
– XML file defines topics, publishers, and subscribers
– Parser sets up the middleware and defines virtual network

MIT Lincoln Laboratory
SPP-HPEC09-17
BAM 10/1/2009

p
topology

Middleware Interfaces

Builder

Interface
to BSPhas aDataReader DataWriter

Interface to Application

Builder

has a
has a

ve
d

fr
om

DataReaderListener

de
riv

ed
 fr

om

d
fr

om

de
riv

ed
 fr

om

CustomBSP-
Builder

de
riv

SrioData-
Reader

SrioData-

SrioData-
Writerde

riv
ed

change with

has a

• Base classes

ReaderListener
change with hardware

change with
comm. tech.

– DataReader, DataReaderListener and DataWriter
interface with the application

– Builder interfaces with BSPs

MIT Lincoln Laboratory
SPP-HPEC09-18
BAM 10/1/2009

• Derive board- and communication-specific classes

Builder

Interface
to BSP

#include <math.h>
...
//member functions
STATUS Builder::performDmaTransfer(...){}
...

Builder

d
fr

om#include <math.h>
#include “vendorPath/bspDma.h”

...

CustomBSP-
ild

de
riv

e...
//member functions
STATUS CustomBSPBuilder::performDmaTransfer(...){

return bspDmaTransfer(...);
}

Builder

• Follows the Builder pattern in Design Patterns*

...

• Provides interface for sRIO-specific tasks
– e.g., establish sRIO connections, execute data transfer

• Certain functions are empty (not necessarily virtual) in the

MIT Lincoln Laboratory
SPP-HPEC09-19
BAM 10/1/2009

base class, then implemented in the derived class with BSP-
specific libraries

*E. Gamma et. al. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley, 1995.

Publishers and Subscribers

has aDataReader

DataReaderListener

DataWriter

ro
m

ro
m

Interface to Application
//member functions
virtual STATUS

DataWriter::write(message)=0;

de
riv

ed
 fr

SrioData-
R d

SrioData-
W itde

riv
ed

 fr
om

de
riv

ed
 fr

virtual STATUS
SrioDataWriter::write(message)

{
Reader

SrioData-
ReaderListener

Writerd

...
myBuilder->performDmaXfer(…);

...
}

Derived Builder type

• DataReaders, DataWriters and DataReaderListeners act as
“Directors” of the Builder

– Tell the Builder what to do Builder determines how to do it

determined dynamically

– Tell the Builder what to do, Builder determines how to do it
• DataWriter used for publishing, DataReader and DataReaderListener

used by subscribers
• Derived classes implement communication(sRIO)-specific, but not

MIT Lincoln Laboratory
SPP-HPEC09-20
BAM 10/1/2009

()
BSP-specific, functionality

– e.g., ring a recipient’s doorbell after transferring data

Outline

• Introduction

• System Architecture

• Software ArchitectureSoftware Architecture

• Initial Results and Demonstration

• Ongoing Work/Summary

MIT Lincoln Laboratory
SPP-HPEC09-21
BAM 10/1/2009

Software-Defined Connectivity
Initial Implementation

<Topic>
<Name>Send</Name>
<ID>0</ID>
<Sources>

<Source>

• Experiment: Process-to-
process data transfer
latency

S t t t i <SourceID>8</SourceID>
</Source>

</Sources>
<Destinations>

<Destination>
DSTID 0 /DSTID

– Set up two topics
– Processes use TCL to

send data back and forth
– Measure round trip time

ith d ith t <DSTID>0</DSTID>
</Destination>

</Destinations>
</Topic>
<Topic>
<Name>SendBack</Name>

with and without
middleware in place

<Name>SendBack</Name>
<ID>1</ID>
<Sources>

<Source>
<SourceID>0</SourceID>
</Source>

Process 2

TCL Middleware

Process 1

</Sources>
<Destinations>

<Destination>
<DSTID>8</DSTID>
</Destination>

</D ti ti >
Switch Fabric

Proc. 1 Proc. 2
OS OS

Proc. N
OS

MIT Lincoln Laboratory
SPP-HPEC09-22
BAM 10/1/2009

</Destinations>
</Topic>FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

Software-Defined Connectivity
Communication Latency

P1 P2

• One-way latency ~23 us for • Reach 95% efficiency at 64One-way latency 23 us for
small packet sizes

• Latency grows
proportionally to packet
si e for large packets

Reach 95% efficiency at 64
KB

• Overhead is negligible for
large packets, despite
increasing si e

MIT Lincoln Laboratory
SPP-HPEC09-23
BAM 10/1/2009

size for large packets increasing size

Demo 1: System Reconfiguration

Processor #1 Processor #2 Processor #3

TCL Middleware

Configuration 1:

Detect Process Transmit

Configuration 2:

XML1 Detect Process Transmit

Detect Transmit Process

Configuration 2:

XML2
Detect Transmit Process

Objective: Demonstrate connectivity reconfiguration
by simply replacing the configuration XML file

MIT Lincoln Laboratory
SPP-HPEC09-24
BAM 10/1/2009

y p y p g g

Demo 2: Resource Management

Receive Proc #1 Transmit

TCL Middleware

Proc #2Control

I will process this new
information!

Transmit Proc #2
information!

Receive Proc #1

I’ve detected
signals!

Low-latency predefined connections allow quick response

MIT Lincoln Laboratory
SPP-HPEC09-25
BAM 10/1/2009

Demo 2: Resource Management

Receive Proc #1 Transmit

TCL Middleware

Proc #2Control

Working…

Transmit Proc #2

I will determine what to

Receive Proc #1

I need more help to
analyze the signals!

I will determine what to
transmit in response!

Resource manager sets up new connections on demand
to efficiently utilize available computing power

MIT Lincoln Laboratory
SPP-HPEC09-26
BAM 10/1/2009

y p g p

Demo 2: Resource Management

Receive Proc #1 Transmit

TCL Middleware

Proc #2Control

Working…
I will transmit the

Transmit Proc #2
I will transmit the

response!

I have determined an

Receive Proc #1

appropriate response!

Proc #1/Transmit are publisher/subscriber on topic TransmitWaveform

MIT Lincoln Laboratory
SPP-HPEC09-27
BAM 10/1/2009

Demo 2: Resource Management

Receive Proc #1 Transmit

TCL Middleware

Proc #2Control

Done!
I will transmit the

Transmit Proc #2
I will transmit the

response!

I have determined an

Receive Proc #1

appropriate response!

After finishing, components may be re-assigned

MIT Lincoln Laboratory
SPP-HPEC09-28
BAM 10/1/2009

Outline

• Introduction

• System Architecture

• Software ArchitectureSoftware Architecture

• Initial Results and Demonstration

• Ongoing Work/Summary

MIT Lincoln Laboratory
SPP-HPEC09-29
BAM 10/1/2009

Ongoing Work

Process P
Process 2Config. Mgr. Res. Mgr. Process 1

Thin Communications Layer (TCL) Middleware

Proc. 1 Proc. 2
OS OS

Proc. N
OS

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

• Develop the middleware
(configuration manager) to
set up fixed connections

• Automate resource management
- Dynamically reconfigure

system as needs change
– Mode 3: Objective system

y g
- Enable more efficient use of

resources (load balancing)

MIT Lincoln Laboratory
SPP-HPEC09-30
BAM 10/1/2009

Summary

• Developing software-defined connectivity of hardware and
software componentssoftware components

• Enabling technology: low-latency pub/sub middleware
– Abstract base classes manage connections between nodes– Abstract base classes manage connections between nodes
– Application developer implements only system-specific send

and receive code

• Encouraging initial results
– At full sRIO data rate, overhead is negligible

• Working toward automated resource management for
efficient allocation of processing capability, as well as
automated setup of low-latency hardware connections

MIT Lincoln Laboratory
SPP-HPEC09-31
BAM 10/1/2009

