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Why Software-Defined Connectivity?

• Modern ISR, COMM, EW 
systems need to be flexible

• Example: Reactive electronic 
warfare (EW) system

– Change hardware and 
software in theatre as 
conditions change 

– Technological upgrade

– Re-task components as 
environmental conditions 
change

– Easily add and replace g g
– Various form factors

• Want the system to be open

y
components as needed 
before and during mission

– Underlying architecture 
specific enough to reduce 
redundant software 
development

– General enough to be applied 
to a wide range of system 
components

E.g., different vendors
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E.g., different vendors
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System representative of 
advanced EW architectures

– RF and programmable 
hardware, processors all 
connected through a Thin Communications Layer (TCL) Middleware

Config. Mgr. Res. Mgr.
Process P

Process 2Process 1

connections connections

connected through a 
switch fabric

Enabling technology: bare-
bone, low-latency pub/sub

Thin Communications Layer (TCL) Middleware

Switch Fabric
Proc. 1 Proc. 2
OS OS

Proc. N
OS
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bone, low latency pub/sub 
middleware 

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1



Mode 1: Hardwired

Config. Mgr. Res. Mgr.
Process P

Process 2Process 1

Thin Communications Layer (TCL) Middleware

Proc. 1 Proc. 2
OS OS

Proc. N
OS

connections to Switch Fabric
FPGA FPGA

T
FPGA FPGA

connections to
hardware fixed

• Hardware components physically connected
• Connections through backplane are fixed (no configuration 

t)

RxRx TxTx
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management)
• No added latency but inflexible



Mode 2: Pub-Sub

Process 4

Res. Mgr.
Process 3

Process 2Proxy 1
Process P

Process 2Process 1

Thin Communications Layer (TCL) Middleware

Proc
OSFPGA

Proc Proc
OS FPGA OS

Proc
OS

Rx
FPGA
Tx Proc

OS Rx

• Everything communicates through the middleware

Switch Fabric

– Hardware components have on-board processors running 
proxy processes for data transfer

• Most flexible, but there will be overhead due to the 
iddl
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middleware



Mode 3: Circuit Switching 

Config. Mgr. Res. Mgr.
Process P

Process 2Process 1

Thin Communications Layer (TCL) Middleware

S it h F b i
Proc. 1 Proc. 2
OS OS

Proc. N
OS

C fi i ll i h

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

• Configuration manager sets up all connections across the 
switch fabric

• May still be some co-located hardware, or some hardware 
that communicates via a processor through the middleware
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that communicates via a processor through the middleware
• Overhead only incurred during configuration



Today’s Presentation

Config. Mgr. Res. Mgr.
Process P

Process 2Process 1

Thin Communications Layer (TCL) Middleware

S it h F b i
Proc. 1 Proc. 2
OS OS

Proc. N
OS

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

• TCL middleware developed to support the SPP system
– Essential foundation

• Resource Manager sets up (virtual) connections between 
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processes
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System Configuration

• 3 COTS boards connected 
through VPX backplane

– 1 Single-board computer, 
dual-core PowerPC 8641

– 1 board with 2 Xilinx Virtex- 5 
FPGAs and a dual-core 8641
1 board with 4 dual core 8641s– 1 board with 4 dual-core 8641s

– Processors run VxWorks
• Boards come from same 

vendor, but have different boardvendor, but have different board 
support packages (BSPs)

• Data transfer technology of 
choice: Serial RapidIO (sRIO)p ( )

– Low latency important for our 
application

• Implement middleware in C++

MIT Lincoln Laboratory
SPP-HPEC09-10
BAM 10/1/2009



System Model

Application
Components

System Control
Componentsp

Signal Processing Lib

Components

V d

BSP2

Operating System

BSP1 HW (Rx/Tx, 
ADC, etc.)

Vendor
Specific

VPX + Serial Rapid I/O
Physical Interface

Operating System 
(Realtime: VxWorks; Standard: Linux)VxWorks
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VPX + Serial Rapid I/OVPX + Serial Rapid I/O



System Model

System Control
Components

Application
Components

Signal Processing Lib
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VPX + Serial Rapid I/OVPX + Serial Rapid I/O



System Model
N SW t

Application
Components

Application
Components

System Control
Components

New SW components

TCL Middl

Signal Processing Lib

New HW

BSP1 BSP2 HW (Rx/Tx, 
ADC t )

Vendor
Specific

TCL Middleware New HW
components

BSP1 BSP2

Operating System 
(Realtime: VxWorks; Standard: Linux)VxWorks

ADC, etc.)

VPX + Serial Rapid I/OVPX + Serial Rapid I/O
Physical Interface

New components can easily be added by
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New components can easily be added by 
complying with the middleware API 
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Publish/Subscribe Middleware
s bscribers
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Middleware acts as interface to both application and hardware/OS



Abstract Interfaces to Middleware

interface with application
What data-

TCL Middleware

transfer 
technology am I 

using? C dd e a e

How (exactly) 
do I execute a 
data transfer?

• Middleware must be abstract to be effective
– Middleware developers are unaware of hardware-specific libraries
– Users have to implement functions that are specific to BSPs
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Users have to implement functions that are specific to BSPs



XML Parser

Config. Mgr. Res. Mgr.

Process P
Process 2

Process 1

Thin Communications Layer (TCL) Middleware
setup.xml Parser

Proc. 1 Proc. 2
OS OS

Proc. N
OS

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

• Resource manager is currently in the form of an XML parser
– XML file defines topics, publishers, and subscribers
– Parser sets up the middleware and defines virtual network 
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p
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Middleware Interfaces

Builder

Interface
to BSPhas aDataReader DataWriter

Interface to Application

Builder

has a
has a

ve
d 

fr
om

DataReaderListener

de
riv

ed
 fr
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d 
fr

om

de
riv

ed
 fr

om

CustomBSP-
Builder

de
riv

SrioData-
Reader

SrioData-

SrioData-
Writerde

riv
ed

change with

has a

• Base classes

ReaderListener
change with hardware

change with 
comm. tech.

– DataReader, DataReaderListener and DataWriter
interface with the application

– Builder interfaces with BSPs
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• Derive board- and communication-specific classes



Builder

Interface
to BSP

#include <math.h>
...
//member functions 
STATUS Builder::performDmaTransfer(...){}
...

Builder

d 
fr

om#include <math.h>
#include “vendorPath/bspDma.h”

...

CustomBSP-
ild

de
riv

e...
//member functions 
STATUS CustomBSPBuilder::performDmaTransfer(...){

return bspDmaTransfer(...);
}

Builder

• Follows the Builder pattern in Design Patterns*

...

• Provides interface for sRIO-specific tasks
– e.g., establish sRIO connections, execute data transfer

• Certain functions are empty (not necessarily virtual) in the 
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base class, then implemented in the derived class with BSP-
specific libraries

*E. Gamma et. al. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley, 1995.



Publishers and Subscribers

has aDataReader

DataReaderListener

DataWriter

ro
m

ro
m

Interface to Application
//member functions
virtual STATUS

DataWriter::write(message)=0;

de
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ed
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SrioData-
R d
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ed
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 fr

virtual STATUS
SrioDataWriter::write(message)

{
Reader

SrioData-
ReaderListener

Writerd

...
myBuilder->performDmaXfer(…);

...
}

Derived Builder type 

• DataReaders, DataWriters and DataReaderListeners act as
“Directors” of the Builder

– Tell the Builder what to do Builder determines how to do it

determined dynamically

– Tell the Builder what to do, Builder determines how to do it
• DataWriter used for publishing, DataReader and DataReaderListener

used by subscribers
• Derived classes implement communication(sRIO)-specific, but not
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( )
BSP-specific, functionality

– e.g., ring a recipient’s doorbell after transferring data
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Software-Defined Connectivity
Initial Implementation

<Topic>
<Name>Send</Name>
<ID>0</ID>
<Sources>

<Source>

• Experiment: Process-to-
process data transfer 
latency

S t t t i <SourceID>8</SourceID>
</Source>

</Sources>
<Destinations>

<Destination>
DSTID 0 /DSTID

– Set up two topics
– Processes use TCL to 

send data back and forth
– Measure round trip time 

ith d ith t <DSTID>0</DSTID>
</Destination>

</Destinations>
</Topic>
<Topic>
<Name>SendBack</Name>

with and without 
middleware in place

<Name>SendBack</Name>
<ID>1</ID>
<Sources>

<Source>
<SourceID>0</SourceID>
</Source>

Process 2

TCL Middleware

Process 1

</Sources>
<Destinations>

<Destination>
<DSTID>8</DSTID>
</Destination>

</D ti ti >
Switch Fabric

Proc. 1 Proc. 2
OS OS

Proc. N
OS
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</Destinations>
</Topic>FPGA 1 FPGA M Rx RRx 1 Tx TTx 1



Software-Defined Connectivity
Communication Latency

P1 P2

• One-way latency ~23 us for • Reach 95% efficiency at 64One-way latency 23 us for 
small packet sizes

• Latency grows 
proportionally to packet 
si e for large packets

Reach 95% efficiency at 64 
KB

• Overhead is negligible for 
large packets, despite 
increasing si e
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size for large packets increasing size



Demo 1: System Reconfiguration

Processor #1 Processor #2 Processor #3

TCL Middleware

Configuration 1:

Detect Process Transmit

Configuration 2:

XML1 Detect Process Transmit

Detect Transmit Process

Configuration 2:

XML2
Detect Transmit Process

Objective: Demonstrate connectivity reconfiguration 
by simply replacing the configuration XML file
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Demo 2: Resource Management

Receive Proc #1 Transmit

TCL Middleware

Proc #2Control

I will process this new
information!

Transmit Proc #2
information!

Receive Proc #1

I’ve detected
signals!

Low-latency predefined connections allow quick response
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Demo 2: Resource Management

Receive Proc #1 Transmit

TCL Middleware

Proc #2Control

Working…

Transmit Proc #2

I will determine what to

Receive Proc #1

I need more help to
analyze the signals!

I will determine what to
transmit in response!

Resource manager sets up new connections on demand 
to efficiently utilize available computing power
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Demo 2: Resource Management

Receive Proc #1 Transmit

TCL Middleware

Proc #2Control

Working…
I will transmit the

Transmit Proc #2
I will transmit the

response!

I have determined an

Receive Proc #1

appropriate response!

Proc #1/Transmit are publisher/subscriber on topic TransmitWaveform
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Demo 2: Resource Management

Receive Proc #1 Transmit

TCL Middleware

Proc #2Control

Done!
I will transmit the

Transmit Proc #2
I will transmit the

response!

I have determined an

Receive Proc #1

appropriate response!

After finishing, components may be re-assigned
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Ongoing Work

Process P
Process 2Config. Mgr. Res. Mgr. Process 1

Thin Communications Layer (TCL) Middleware

Proc. 1 Proc. 2
OS OS

Proc. N
OS

Switch Fabric
FPGA 1 FPGA M Rx RRx 1 Tx TTx 1

• Develop the middleware 
(configuration manager) to 
set up fixed connections 

• Automate resource management
- Dynamically reconfigure 

system as needs change
– Mode 3: Objective system

y g
- Enable more efficient use of 

resources (load balancing)
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Summary

• Developing software-defined connectivity of hardware and 
software componentssoftware components

• Enabling technology: low-latency pub/sub middleware
– Abstract base classes manage connections between nodes– Abstract base classes manage connections between nodes
– Application developer implements only system-specific send 

and receive code

• Encouraging initial results
– At full sRIO data rate, overhead is negligible 

• Working toward automated resource management for 
efficient allocation of processing capability, as well as 
automated setup of low-latency hardware connections
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