SN
X

%
Y,

(7<C

A Special-Purpose Processor
System with Software-Defined
Connectivity

Benjamin Miller, Sara Siegal, James Haupt, Huy Nguyen
and Michael Vai

MIT Lincoln Laboratory

22 September 2009

This work is sponsored by the Navy under Air Force Contract FA8721-05-0002. Opinions, interpretations, conclusions
and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory <=

SPP-HPEC09-1
BAM 10/1/2009

o Outline

* |ntroduction

MIT Lincoln Laboratory <=
SPP-HPEC09-2

BAM 10/1/2009

3
Y,

""’
K&

Why Software-Defined Connectivity?

* Modern ISR, COMM, EW * Example: Reactive electronic
systems need to be flexible warfare (EW) system
— Change hardware and — Re-task components as
software in theatre as environmental conditions
conditions change change
— Technological upgrade — Easily add and replace
— Various form factors components as needed

before and during mission

* Want the system to be open

— Underlying architecture
specific enough to reduce
redundant software
development

— General enough to be applied
to a wide range of system
components

E.g., different vendors

MIT Lincoln Laboratory <=

SPP-HPEC09-3
BAM 10/1/2009

Special Purpose Processor (SPP)

3
¥,

System
I'i' | Antenna Interface i _H
41l Rx1t—| +— FPGA1l |— Processor 1l |— X1
2 9
JIBHs Rx 2 =] | FPGA2 |— Processor 2 = LXLITE | ||
Z1rs ° ° [= b
il o o o o [[&
L L ° o g m
o o
| RxR |—| (—=| FPGAM [—| [— Processor N Tx T Ht M
r Switch Fabric |
configure manage data processing
backplane inter-process algorithms

* Sé/Stem rCIe|3Er\/e\/sentﬁtgvetof connections connections

aavance architectures 0

— RF and programmable f\!’
hardware, processors all g i L §:3={!
connected through a ' icati '

switch fabric

Enabling technology: bare- Proc. 1 Proc. 2 Sy
bone, low-latency pub/sub - Switch Eabric
middleware FPGAL Jo oo FPGAM [Rx L Joe o RxR [Tx 1 Jo e o[TxT

MIT Lincoln Laboratory <=

SPP-HPEC09-4
BAM 10/1/2009

3

PRR
'Y

Mode 1: Hardwired

RG>

s

gl

‘ Proc. 2 i

* Hardware components physically connected

XX
Proc. 1 Proc. N
connections to I-_I .
hardware fixed SW|tCh Fab”C
FPGA FPGA FPGA FPGA
RX o900 RX ™ | *°*° TX

* Connections through backplane are fixed (no configuration

management)

* No added latency but inflexible

SPP-HPEC09-5
BAM 10/1/2009

MIT Lincoln Laboratory <=

Y
K

Mode 2: Pub-Sub

(77
EX XD

Tx

FPGA
Proc Proc

Switch Fabric

* Everything communicates through the middleware

— Hardware components have on-board processors running
proxy processes for data transfer

* Most flexible, but there will be overhead due to the
middleware

MIT Lincoln Laboratory <=

SPP-HPEC09-6
BAM 10/1/2009

Jb ‘ Proc. 1 \ Proc. 2 Proc. N

Switch Fabric
FPGA 1l |eeoe FPGAMWRXl eee|] RXR ITX1 |[eee| TXT

* Configuration manager sets up all connections across the
switch fabric

* May still be some co-located hardware, or some hardware
that communicates via a processor through the middleware

®* Overhead only incurred during configuration
MIT Lincoln Laboratory <=

SPP-HPEC09-7
BAM 10/1/2009

»

PR
'Y

Today’s Presentation

(7<C

i B ‘ Proc. 1 \ ‘ Proc. 2 \

v Switch Fabric

FPGA 1l |eee] FPGA M Rx1 |[eee|] RXR Tx1 [eee| TX T

* TCL middleware developed to support the SPP system
— Essential foundation

* Resource Manager sets up (virtual) connections between
processes

MIT Lincoln Laboratory <=

SPP-HPEC09-8
BAM 10/1/2009

£ Outline

e System Architecture

MIT Lincoln Laboratory <=
SPP-HPEC09-9

BAM 10/1/2009

»
A

System Configuration

K
'Y

(7<C

e 3 COTS bhoards connected
through VPX backplane

— 1 Single-board computer,
dual-core PowerPC 8641

— 1 board with
and a dual-core 8641

— 1 board with 4 dual-core 8641s
— Processors run VxWorks

* Boards come from same
vendor, but have different board
support packages (BSPs)

* Data transfer technology of
choice: Serial RapidlO (sRIO)

— Low latency important for our
application

* Implement middleware in C++

MIT Lincoln Laboratory <=

SPP-HPEC09-10
BAM 10/1/2009

3
¥,

""'
KL

System Model

v
Vendor
Specific=

MIT Lincoln Laboratory ==

SPP-HPEC09-11
BAM 10/1/2009

3
¥,

System Model

%
&

;

""
&

Vendor
Specific™

MIT Lincoln Laboratory ==
SPP-HPEC09-12

BAM 10/1/2009

& System Model

. New HW
ymponents

Vendor
Specifi

New components can easily be added by
complying with the middleware API

MIT Lincoln Laboratory <=
SPP-HPEC09-13

BAM 10/1/2009

o Outline

e Software Architecture

MIT Lincoln Laboratory <=
SPP-HPEC09-14

BAM 10/1/2009

\
9,

K

Publish/Subscribe Middleware

"'
&L

Publishing

licat ...and the
3IOIO 'Ci 1on » A subscribers are
oesntneedlo unconcerned

know where the

: : about where
datais going . ..

their data comes
from

Proc. Kk Proc. |,

Switch ' E : ,
Fabric

Middleware acts as interface to both application and hardware/OS

MIT Lincoln Laboratory <=

SPP-HPEC09-15
BAM 10/1/2009

NN
X

Abstract Interfaces to Middleware

O

What data-
transfer
technology am |
using?

How (exactly)
do | execute a
data transfer?

* Middleware must be abstract to be effective
— Middleware developers are unaware of hardware-specific libraries
— Users have to implement functions that are specific to BSPs

MIT Lincoln Laboratory <=

SPP-HPEC09-16
BAM 10/1/2009

R
'Y

<7
S

XK

XML Parser

==
r Sintch Fabric '

* Resource manager is currently in the form of an XML parser
— XML file defines topics, publishers, and subscribers

— Parser sets up the middleware and defines virtual network
topology

setup.xml |${ Parser }E>

MIT Lincoln Laboratory <=

SPP-HPEC09-17
BAM 10/1/2009

+“Interface to Application AN

DataReader lﬁ%i) DataWriter
YN

&3 Middleware Interfaces

to BSP

Builder

Lo

DataReaderListener

has a

has a

m

has a

s =

change with
\\ comm. tech.

* Base classes

Builder

N 7/
change with hardware

|
|
|
|
|
|
|
|
|
|
|
CustomBSP- b
1

— DataReader, DataReaderListener and DataWriter

interface with the application
— Builder interfaces with BSPs

* Derive board- and communication-specific classes

SPP-HPEC09-18
BAM 10/1/2009

MIT Lincoln Laboratory <=

&) Builder

(" #include <math.h> - T T T T S
i Interface
//member functions |
STATUS Builder::performbmaTransfer(...){} ['[0 BSP
o Builder

U

#include <math_h>

#includeCCVendorpPath/bspDma.h™>

//member functions

STATUS CustomB i e DmaTransfer(...){
return bspDmaTransfer(...);

}

CustomBSP-
Builder

* Follows the Builder pattern in Design Patterns*

* Provides interface for sRIO-specific tasks
— e.g., establish sRIO connections, execute data transfer

* Certain functions are empty (not necessarily virtual) in the
base class, then implemented in the derived class with BSP-

sEecific libraries
MIT Lincoln Laboratory <=

SPP-HPEC09-19

BAM 1012000 E. Gammaet. al. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley, 1995.

\
d
9,

Publishers and Subscribers

<7

R

Interface to Application \
\ //member functions

DataReader hasa) DataWriter |I virtual STATUS
{ DataWriter::write(message)=0;

= N

DataReaderlListener

I
I
I
| 5
| % virtual STATUS 1)
— o — SrioDataWriter: :write(message)
| | SrioData- 5 SrioData- {
| Reader = Writer o
l SrioData- I myBui lder->performbDmaxXfer(..);
ReaderListener / ---
\ ’ }
g g g - j

Derived Builder type
determined dynamically

® DataReaders, DataWriters and DataReaderListeners act as
“Directors” of the Builder

— Tell the Builder what to do, Builder determines how to do it

* DataWriter used for publishing, DataReader and DataReaderListener
used by subscribers

* Derived classes implement communication(sRIO)-specific, but not
BSP-specific, functionality

— e.g., ring arecipient’s doorbell after transferring data

SPP-HPEC09-20
BAM 10/1/2009

MIT Lincoln Laboratory <=

o Outline

e |nitial Results and Demonstration

MIT Lincoln Laboratory <=
SPP-HPECO09-21

BAM 10/1/2009

RS
'Y

Software-Defined Connectivity
Initial Implementation

* EXxperiment: Process-to-
process data transfer
latency

Set up two topics

Processes use TCL to
send data back and forth

Measure round trip time
with and without
middleware in place

C

IEIIESMHIHIEIJI bric

FPGA 1

FPGAM J[Rx 1

TX T

SPP-HPEC09-22
BAM 10/1/2009

<Topic>
<Name>Send</Name>
<ID>0</1D>
<Sources>
<Source>
<SourcelD>8</SourcelD>
</Source>
</Sources>
<Destinations>
<Destination>
<DSTID>0</DSTID>
</Destination>
</Destinations>
</Topic>
<Topic>
<Name>SendBack</Name>
<ID>1</1D>
<Sources>
<Source>
<SourcelD>0</SourcelD>
</Source>
</Sources>
<Destinations>
<Destination>
<DSTID>8</DSTID>
</Destination>
</Destinations>
</Topic>

MIT Lincoln Laboratory <=

\
9,

KL

Software-Defined Connectivity
Communication Latency

D

Thin Communication Layer Performance Comparison

(7S
o
»

—
o
L4}
T—TT

Bandwidth (MB/s)
o

1024 8192 65536 524288 4194304 1024 8192 65536 524288 4194304

Packet Size (Bvtes) Packet Size (Bytes)
* One-way latency ~23 us for * Reach 95% efficiency at 64
small packet sizes KB
e Latency grows * Overhead is negligible for
proportionally to packet large packets, despite
size for large packets Increasing size

MIT Lincoln Laboratory <=

SPP-HPEC09-23
BAM 10/1/2009

20
'Y

Demo 1: System Reconfiguration

(7S

Configuration 1: ‘ ‘ ‘ ‘
14

Configuration 2:
- @

Objective: Demonstrate connectivity reconfiguration
by simply replacing the configuration XML file

MIT Lincoln Laboratory <=

SPP-HPEC09-24
BAM 10/1/2009

3
Y,

Demo 2: Resource Management

""’
K&

I will process this new
information!

I've detected
signals!

Low-latency predefined connections allow quick response

MIT Lincoln Laboratory <=

SPP-HPEC09-25
BAM 10/1/2009

3
¥,

""
&

Demo 2: Resource Management

%
&

| will determine what to
I need more help to transmit in response!
analyze the signals!

Resource manager sets up new connections on demand
to efficiently utilize available computing power

MIT Lincoln Laboratory <=
SPP-HPEC09-26

BAM 10/1/2009

3
Y,

Demo 2: Resource Management

""’
K&

I will transmit the
response!

| have determined an
appropriate response!

Proc #1/Transmit are publisher/subscriber on topic TransmitWaveform

MIT Lincoln Laboratory <=

SPP-HPEC09-27
BAM 10/1/2009

3
Y,

Demo 2: Resource Management

""’
K&

I will transmit the
response!

| have determined an
appropriate response!

After finishing, components may be re-assigned

MIT Lincoln Laboratory <=

SPP-HPEC09-28
BAM 10/1/2009

£ Outline

* Ongoing Work/Summary

MIT Lincoln Laboratory <=
SPP-HPECO09-29

BAM 10/1/2009

& Ongoing Work

~ .
Software Modules SW Module R :
(SW Module] Timing || _APAC [— . I . I 1 I

Interference |["swModule || 1 APC
SW Module |} mitigation aTTel
Image Detection
Formation
A A FPGA

Thin Communications Layer (Pub/Sub) cee

Physical Layer (e.q., Switch Fabric) — PrOC. l PrOC. 2 PrOC. N
e Switch Fabric
FPGA1 e o[FPGAM [[Rx 1 Joo o RxR [Tx1 Jo e o[TxT
° Deve'Op the middleware * Automate resource management
(configuration manager) to - Dynamically reconfigure
set up fixed connections system as needs change
— Mode 3: Objective system - Enable more efficient use of

resources (load balancing)

MIT Lincoln Laboratory <=

SPP-HPEC09-30
BAM 10/1/2009

PRI
'Y

Summary

K

* Developing software-defined connectivity of hardware and
software components

* Enabling technology: low-latency pub/sub middleware
— Abstract base classes manage connections between nodes

— Application developer implements only system-specific send
and receive code

* Encouraging initial results
— At full sRIO data rate, overhead is negligible

* Working toward automated resource management for
efficient allocation of processing capability, as well as
automated setup of low-latency hardware connections

MIT Lincoln Laboratory <=

SPP-HPEC09-31
BAM 10/1/2009

