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Introduction 

An open-architecture special-purpose processor (SPP) 
system that can host a variable number of receivers, trans-
mitters, and processors is being developed for a broad class 
of DoD systems (ISR, COMMS, EW/EA, etc.). The salient 
feature of this SPP system is the component connectivity, 
which is defined by a low-latency, point-to-point, high-
speed switch fabric that is user programmable. As the func-
tionality of this system is completely defined by its soft-
ware (CPUs), firmware (FPGAs), and connectivity, it can 
be readily constructed as a high-performance, heterogene-
ous processing system. In addition, such a system is inher-
ently anti-tamper as the critical program information is en-
tirely contained in software and firmware. 

 
Motivation 

One example application of the SPP system is a reactive 
jammer. Development challenges of this application are 
numerous. The implementation has to meet SWaP require-
ments under extreme environmental constraints. The opera-
tion must have very low latency. In addition, the asymmet-
ric warfare nature of “Overseas Contingency Operation” 
requires a jammer to be adaptable to new technologies (e.g., 
new devices) and operating environments (e.g., rural vs. 
urban). A successful jammer system must thus be scalable, 
modular, upgradeable, and serviceable.  

 
Architecture 

Figure 1 shows the architecture of an exemplar SPP sys-
tem. The communication paths between components are 
fully user definable. The general data flow path of this ar-
chitecture is as follows. The receivers pick up signals in 
their tuned bands. The signals are digitized and passed on to 
the processors for detection and discrimination. Based on 
the results, appropriate response waveforms are sent to the 
transmitters.  

 

 
 

Figure 1: The architecture of an SPP system 
 
With software-defined connectivity, the architecture 

shown in Fig. 1 is fully configurable in different situations 
and environments.  Depending on the received signal type, 
different processing paths may be needed. For example, in 

one configuration, the output of a receiver is connected to 

an FPGA processor, which generates and sends a response 
to a transmitter. In another case, the output of the FPGA 
may be sent to a CPU for further discrimination. It is the 
role of the CPU to provide an adequate response to the 
transmitter. 

The architecture also provides the flexibility and scal-
ability for different form factors (e.g., hand-held vs. fixed-
site) and operations (e.g., urban vs. rural). For example, a 
hand-held device may have a single receiver–transmitter 
pair while a fixed-site device may have a whole band of 
receivers and transmitters to cover a wider spectrum. The 
reconfigurability of the architecture also provides fault tol-
erance and optimal use of limited resources.  

Most of the applications targeted by the SPP system re-
quire low communication latency between components. 
The implementation of an SPP must thus have minimal 
overhead. After evaluating a number of general-purpose 
products, the development team chose to follow the radar 
open system architecture (ROSA) model [1] and create a 
bare-bone middleware library to minimize overhead. Like 
the radar thin communications layer (RTCL) library, this 
library uses a publish/subscribe paradigm to release appli-
cations from the need to keep track of their receiving cli-
ents.  

In the SPP software architecture shown in Figure 2, the 
thin communications layer is the key component. In addi-
tion to the implementation of a low-overhead pub-
lish/subscribe communication paradigm, the thin communi-
cations layer also isolates HW components (Rx/Tx, ADC, 
etc.) from the system control components. Similarly, the 
application components (software) are also isolated from 
the hardware details. The application interface is imple-
mented in two levels. First, it communicates to the thin 
communications layer. Second, it employs signal process-
ing functions from a library that has been adapted to the 
thin communications layer.  
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Figure 2: SPP software architecture 

 
The middleware library has a few abstract classes that 

can be used to implement the functionality that allows 



components to communicate with each other. The DataW-
riter class allows a publisher component to send data to 
all components that subscribe to its topic. A subscriber re-
ceives a notification from a DataReaderListener 
when data is published to a topic of interest, then uses a 
DataReader to read in the data. Since serial RapidIO 
(sRIO) is used for communication in the current system, 
concrete sRIO-specific classes SrioDataWriter, 
SrioDataWriter and SrioDataReaderListener 
have been derived. Applications will call member 
functions of these concrete classes for data transfer between 
components. 

In order to implement an open system architecture, the 
middleware library provides a Builder class to isolate 
applications from the vendor-specific physical interface 
drivers, commonly referred to as board support packages 
(BSP). Following the methodology described in [2] with the 
DataWriters and DataReaders acting as directors, 
the user derives a class from Builder that implements a 
number of virtual functions such as reserveChannel() 
and performDMAXfer(). These functions serve as the 
interfaces to board-specific BSP libraries. As these inter-
faces are defined in the base class, the user-level DataW-
riters and DataReaders do not need knowledge of 
these implementation details.   

The architecture openness of the system is ensured by 
the fact that a new component, in addition to comply with 
the physical interface (i.e., pin compatability), only needs to 
supply its board-specific implementation of the pure virtual 
functions. Its BSP must be compatible with the API defined 
in the thin communications layer middleware library.  

The data communication between applications is han-
dled by the middleware. The current implementation em-
ploys sRIO to communicate between components, which 
allows fast transmission of data between them. The compo-
nent BSP only has to provide component-specific functions 
for carrying out basic sRIO operations (e.g., setting up in-
bound and outbound windows, triggering doorbells, etc.). 
The details of communications between publisher and sub-
scribers are hidden from the users. 

 
Initial Implementation and Ongoing Activities 
The middleware library has been initially implemented and 
verified in a development system. In the current implemen-
tation, the connectivity between components is defined with 
a user-created XML (extensible markup language) file. An 
example XML file is shown in Figure 3. The file is read in 
by the system to set up topics and their publishers and sub-
scribers. This feature allows the connectivity of a system to 
be rapidly redefined as required by the situation. A new 
XML file can be loaded into the system either manually or 
automatically (e.g., through a network), allowing a quick 
turn-around time for reconfigurability. 

A common concern when using communications layer 
middleware is its overhead and associated latency. Experi-
ments were performed to measure the data transfer rates 
and compare them against the native sRIO data rates. The 
results shown in Figure 4 document the overhead of the thin 
communications layer, which is practically negligible with 
larger packet sizes.  

 

 

   <Topic> 
 <Name>Detection</Name> 
 <ID>3</ID> 
 <Sources> 
     <Source> 
  <SourceID>8</SourceId> 
  <NumBufs>2</NumBufs>   
     </Source> 
 </Sources> 
 <Destinations> 
   <Destination> 
  <DSTID>0</DSTID> 
   </Destination> 
 </Destinations> 

</Topic> 

Figure 3: Example XML configuration file 
 

 
Figure 4: sRIO data rate with and without the thin commu-

nications layer 
 
Figure 5 illustrates an approach that allows the bypass-

ing of the thin communications layer. In extremely demand-
ing cases, a real-time streaming device (e.g., an ADC fol-
lowed by an FPGA) can bypass the communications layer 
and send data directly to its destination. 

 

 
 

Figure 5: A streaming device can bypass the thin communi-
cation layer to minimize latencies  

 
The development team is in the process of integrating 

the middleware library with an application developed in 
parallel. Other ongoing activities include the development 
of an exploration function to automatically detect and con-
figure components on power-up (i.e., plug and play).  
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