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Motivation

The memory gap warrants a paradigm shift in how y g p p g
we move information to and from storage and 
computing elements
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[www.OpenSparc.net]
[Exascale Report, 2008]



Main Premise

Current memory subsystem technology and y y gy
packaging are not well-suited to future trends

Networks on chip

i  h  iGrowing cache sizes

Growing bandwidth requirements

Growing pin countsGrowing pin counts
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SDRAM context

• DIMMs controlled fully in parallel, 
sharing access on data and address busses sharing access on data and address busses 
• Many wires/pins
• Matched signal paths (for delay)
• DIMMs made for short, random accessesDIMMs made for short, random accesses

DIMM

Chip Lately, this 
is on chip

[Intel]

Memory 
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Future SDRAM context

Example: Tilera TILE 64p 4
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SDRAM DIMM Anatomy
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Memory Access in an Electronic NoC

Chip Boundarymessage
Packetized, size of 

k t d t i d 

NoC router

Chip Boundarymessage packet determined 
by router buffers

Memory 
Controller

Burst length 
dictated by 
packet size

10/1/2009Lightwave Research Lab, Columbia University



Memory Control

Complex DRAM controlp
Scheduling accesses around:

Open/closed rows

PrechargingPrecharging

Refreshing

Data/Control bus usage
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[DRAMsim, UMD]



Experimental Setup – Electronic NoC

2cm×2cm chip
System: 5-port Electronic Router

2cm×2cm chip
8×8 Electronic Mesh

28 DRAM Access points (MCs)
2 DIMMs per DRAM AP

RRouters:
1 kb input buffers (per VC)
4 virtual channels
256 b packet size
128 b h l128 b channels

32 nm tech. point (ORION)
Normal Vt
Vdd = 1.0 V
F 2 5 GHFreq = 2.5 GHz

Random core-DRAM access point pairs
Random read/write

Traffic:
Modeled cycle-accurately with DRAMsim [Univ. MD]
DDR3 (10 10 10) @ 1333 MT/

DRAM:

Uniform message sizes
Poisson arrival at 1µs
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DDR3 (10-10-10) @ 1333 MT/s
8 chips per DIMM, 8 banks per Chip, 2 ranks



Experiment Results
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Current
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Goal: Optically Integrated Memory

Optical Fiber

Optical 
Transceiver

Vdd, Gnd
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Advantages of Photonics

Decoupled energy-distance relationship

No long traces to drive and synch with clock
DRAM chips can run faster

L  Less power

Less pins on DIMM module and going into chip
Eventually required by packaging constraintsy q y p g g

Waveguides can achieve dramatically higher density due to WDM

DRAM can be arbitrarily distant – fiber is low loss
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Hybrid Circuit-Switched Photonic Network

Broadband 
1×2 Switch
Broadband 
1×2 Switch [Cornell, 2008]

Broadband 
2×2 Switch
Broadband 
2×2 Switch
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[Shacham, NOCS ’07]
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Hybrid Circuit-Switched Photonic Network
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Hybrid Circuit-Switched Photonic Network
16
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Hybrid Circuit-Switched Photonic Network
17
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Photonic DRAM Access
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Memory Transaction

DIMMMemory 

To et o k
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Memory READ Transaction

4) MC receives READ command
5) Switch is setup from modulators to 

DIMM, and from DIMM to network
6) Path setup travels back to receiving 

Processor. Path ACK returns when Processor. Path ACK returns when 
path is set up

7) Row/Col addresses sent to DIMM 
optically

8) R d d  d i ll

8

8) Read data returned optically
9) Path torn down, MC knows how long 

it will take  
Photonic 

switch
Modulators7

5

Control
4

8
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Memory WRITE Transaction

4) MC receives WRITE command, which is 
also a path setup from the processor to 
memory gateway

5) Switch is setup from modulators to 
DIMMDIMM

6) Row/Col addresses sent to DIMM
7) Switch is setup from network to DIMM
8) Path ACK sent back to Processor

) D  i d i ll   DIMM

9

9) Data transmitted optically to DIMM
10) Path torn down from Processor after 

data transmitted
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Optical Circuit Memory (OCM) Anatomy
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Advantages of Photonics

Decoupled energy-distance relationship

No long traces to drive and synch with clock
DRAM chips can run faster

L  Less power

Less pins on DIMM module and going into chip
Eventually required by packaging constraintsy q y p g g

Waveguides can achieve dramatically higher density due to WDM

DRAM can be arbitrarily distant – fiber is low loss

Simplified memory control logic – no contending 
accesses, contention handled by path setup

Accesses are optimized for large streams of dataAccesses are optimized for large streams of data
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Experimental Setup - Photonic

2cm×2cm chip
System: Photonic Torus Tile

2cm×2cm chip
8×8 Photonic Torus

28 DRAM Access points (MCs)
2 DIMMs per DRAM AP

RRouters:
256 b buffers
32 b packet size
32 b channels

32 h i (ORION)32 nm tech. point (ORION)
High Vt
Vdd = 0.8 V
Freq = 1 GHz

Ph t i 13λPhotonics - 13λ

Random core-DRAM access point pairs
Random read/write

Traffic:
Modeled with our event-driven DRAM model

DRAM:

Uniform message sizes
Poisson arrival at 1µs
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DDR3 (10-10-10) @ 1600 MT/s
8 chips per DIMM, 8 banks per Chip



Performance Comparison
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Experiment #2

Random Statically Mapped Address Space
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Results
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Network Energy Comparison
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1%

3%

16%

Electronic Arbiter

Electronic Clock Tree

Electronic Crossbar

1%

7%

Electronic Arbiter

57%

9%

4%

6%

4%

3
Electronic Inport

Electronic Wire

Detector

Modulator

PSE1x2

Electronic Clock Tree

Electronic Crossbar

Electronic IO Wire

Electronic Inport

Electronic Wire 9% PSE1x2

PSE2x2

Thermal Tuning

90%

Electronic Wire

Power = 0.42 W

Power = 13.3 W Total Power = 2.53 W
(Including laser power)

10/1/2009Lightwave Research Lab, Columbia University



Summary

Extending a photonic network to include access to g p
DRAM looks good for many reasons:

Circuit-switching allows large burst lengths and simplified 
memory control  for increased bandwidthmemory control, for increased bandwidth.

Energy efficient end-to-end transmission

Alleviates pin count constraints with high-density waveguidesp g y g

10/1/2009Lightwave Research Lab, Columbia University

PhotoMAN


