Silicon-Photonic Clos Networks for Global On-Chip Communication

Ajay Joshi^{*}, Christopher Batten[†], Yong-Jin Kwon[‡], Scott Beamer[‡], Imran Shamim[†], Krste Asanović[‡], Vladimir Stojanović[†]

*Boston University, Boston MA

[†]Massachusetts Institute of Technology, Cambridge MA

[‡]University of California, Berkeley, CA

HPEC 2009

Our target manycore system

On-chip network topology spectrum

Landscape of on-chip photonic networks

		V V V V V	∇ ∇ ∇ ∇ ∇	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	∇ ∇ ∇ ∇	V V V V V	V V V V	-
िर्यर्थे रेरे		2 2 2 2	D D D D D D D D D D D D D D	マ マ マ マ マ	文 文 文 文	₹	V V V V	

Mesh

CMesh

Crossbar

[Shacham'07] [Petracca'08]

[This work] [Pan'09]

[Vantrease'08] [Psota'07] [Kirman'06] Ajay Joshi

Outline

- Photonic interconnect technology
- Photonic networks
- Electrical vs Photonic networks

Photonic technology – Silicon photonic link

Silicon photonic link – Coupler

Silicon photonic link – Ring modulator

Silicon photonic link – Waveguide

Silicon photonic link – Ring filter, photodetector

Silicon photonic link – WDM

Dense WDM (128 λ/wg, 10 Gbps/λ) improves bandwidth density

Silicon photonic link – Energy cost

- E-O-E conversion cost 50-150 fJ/bt (independent of length)
- Thermal tuning energy (increases with ring count)
- External laser power (dependent on losses in photonic devices) **BU/MIT/UCB**

Electrical technology

Electrical technology

Electrical vs Optical links – Energy cost

BU/MIT/UCB

Ajay Joshi

Electrical vs Optical links – Energy cost

Electrical vs Optical links – Bandwidth density

Repeater inserted pipelined wires – 10 Gbps/µ

Wavelength-division multiplexed photonic link – 320 Gbps/µ

30x bandwidth density advantage using optical links

Outline

- Photonic interconnect technology
- Photonic networks
- Electrical vs Photonic networks

Outline

- Photonic interconnect technology
- Photonic networks
- Electrical vs Photonic networks

Distributed Multiplexer Crossbar

Electrical design

Photonic design

Distributed Multiplexer Crossbar

Electrical design

Photonic design

Centralized Multiplexer Crossbar

Electrical design

Photonic design

Centralized Multiplexer Crossbar

Electrical design

Photonic design

BU/MIT/UCB

Ajay Joshi

Photonic device requirements in a crossbar

Photonic device requirements in a crossbar

Waveguide loss and Through loss limits for 2 W optical laser power (30% laser efficiency) constraint

Outline

- Interconnect technologies
- Photonic networks
- Electrical vs Photonic networks

Clos network using point-to-point channels

Photonic design

Clos network using point-to-point channels

Photonic design

Photonic device requirements in a Clos

Waveguide loss and Through loss limits for 2 W optical laser power (30% laser efficiency) constraint

Photonic device requirements in a Clos

Optical loss tolerance for Crossbar

Optical loss tolerance for Clos

Photonic Crossbar vs Photonic Clos

Crossbar

- 10 W power for thermal tuning circuits (1 µW/ring/K)
- For 2 W optical laser power
 - Waveguide loss < 1 dB/cm
 - Through loss < 0.002 dB/ring</p>

Clos

- 0.56 W power for thermal tuning circuits (1 µW/ring/K)
- For 2 W optical laser power
 - Waveguide loss < 2dB/cm
 - Through loss < 0.05 dB/ring</p>

Outline

- Photonic interconnect technology
- Photonic networks
- Electrical vs Photonic networks

Simulation setup

- Cycle-accurate microarchitectural simulator
- Traffic patterns based on partition application model
 - Global traffic UR, P2D, P8D
 - Local traffic P8C
- 64-tile system, 512-bit messages
- Events captured during simulations to calculate power

Power-Bandwidth tradeoff

BU/MIT/UCB

Ajay Joshi

Power-Bandwidth tradeoff

Power-Bandwidth tradeoff

Conclusion

- Accurate baseline electrical design required
- Need to carefully account for the energy components in optical interconnects
 - E-O-E conversion, Thermal tuning power, Optical laser power
- Clos network provides comparable throughput at lower energy for global traffic patterns
- More work required on the photonic device design

Acknowledgement

- MIT photonic device team
 - Franz Kärtner, Rajeev Ram, Judy Hoyt, Henry Smith
 - Jason Orcutt, Anatoly Khilo, Benjamin Moss, Charles Holzwarth, Jonathan Leu, Michael Georgas, Jie Sun, Miloš Popović, Hanqing Li
- Funding sources
 - DARPA
 - Intel Corp.

Backup

Clos network using intermediate crossbar

Electrical design

Photonic design

Clos network using intermediate crossbar

Photonic design

Clos network using intermediate crossbar

Photonic design