

Aerospace Data Storage and Processing Systems

### High-performance Heterogeneous and Flexible Computing Architecture for Spacecraft Internet Protocol Communication and Payload Processing

#### Ian Troxel, Paul Murray and Steve Vaillancourt

SEAKR Engineering, Inc. Centennial, CO

High Performance Embedded Computing Workshop Lexington, MA September 22-23, 2009

All slides within this presentations are classified: UNCLASSIFIED

 $\ensuremath{\textcircled{\text{c}}}$  2008 and 2009, SEAKR Engineering, Inc. All right reserved.

# Motivation



Aerospace Data Storage and Processing Systems

Mission requirements increasing

- Higher resolution data acquisition driving processing and storage
- Onboard processing and/or downlink often the system bottleneck
- Increased need for autonomous functionality
- System flexibility sought to limit NRE
- Design challenges keeping pace
  - SWaP limitations on payloads not relaxing
  - Multiuse systems and payloads desired
  - Use of Commercial-Off-The-Shelf (COTS) devices
    - "Rad-hard" components less cost-effective for high-performance apps
    - Improved performance with mitigation to achieve fault tolerance
  - System heterogeneity and increased complexity
    - Reconfigurable computing devices provide flexibility and improved perf/Watt for amenable application classes
    - General-purpose processors well suited to control and database apps.
    - Special-purpose procs provide app. specificity with reduced dev. cost

# **HPEC with Flexibility**



Aerospace Data Storage and Processing Systems

#### **Application Independent Processor (AIP) Features**

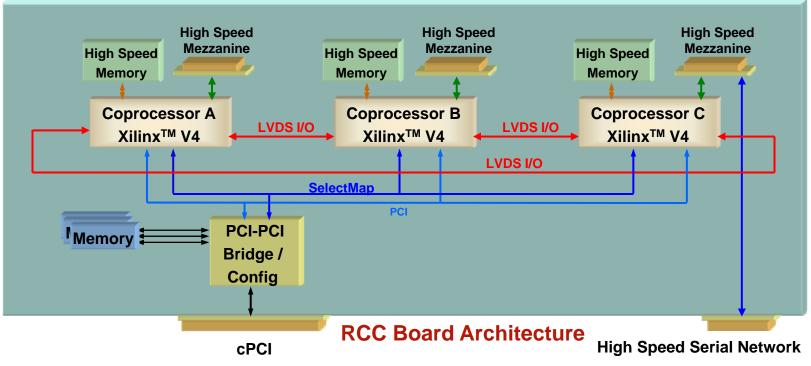
- Mixture of general-purpose processors and RCCs
- Reconfigurable on-orbit
- Flexible, scalable architecture
- Usage of open standards
- SEE Tolerant system
- Flexible I/O architecture

#### Designed for Responsive Space

- Low cost, high performance
- Rapid deployment through adaptability
- Designed for multiple missions



**ARTEMIS Configuration of AIP** 


# **AIP System Architecture**



Aerospace Data Storage and Processing Systems

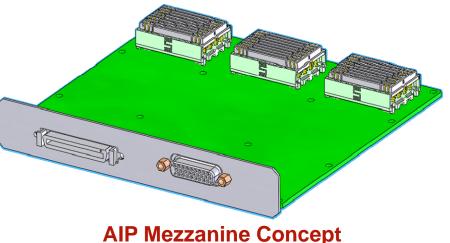
Xilinx<sup>®</sup> Reconfigurable Computer Board(s)

- □ COTS PowerPC<sup>TM</sup>–based SBC(s)
- □ Memory and I/O personality mezzanine cards
  - Flash memory, camera link, analog, digital developed to date
- □ Flexibility to incorporate other system control and I/O capability



### **AIP Personality Mezz. Card**




#### Aerospace Data Storage and Processing Systems

#### Personality Mezzanine for application- specific functionality

- Lower risk/cost, quick development
- I/O and unique I/O connectors
- Memory, Logic, TMR mitigation
- Analog circuitry ADC/DAC

#### □High speed mezzanine connectors

- 170 high speed I/O
- Symmetrical Design to all FPGAs
- □ Fault tolerance options
  - "Rad hard" voter on the mezz.
  - Partial TMR
  - SEAKR replay capability provides temporal redundancy
  - Combinations





#### **ARTEMIS Mezzanine**

# **AIP Deployments**



Aerospace Data Storage and Processing Systems

#### □AFRL TacSat-3 Responsive Space mission

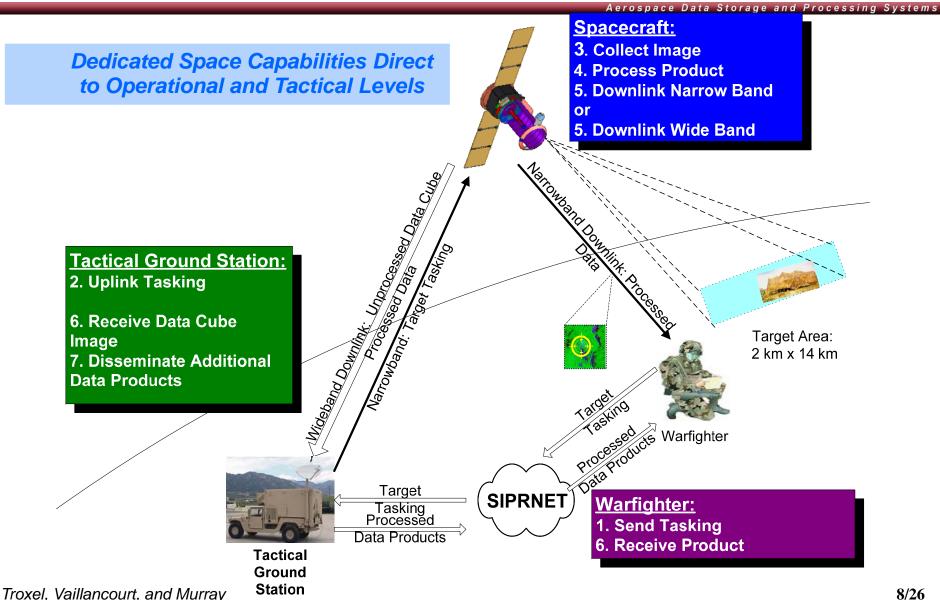
 Raytheon's Advanced Responsive Tactically Effective Military Imaging Spectrometer (ARTEMIS)

#### **Cisco's Internet Router In Space (IRIS)**

- Space Internet Protocol Router (SIPR)
- Programmable Space IP Modem (PSIM)
- □AFRL Plug and Play Satellite project
  - Programmable Space Transceiver (PST)
- □SEAKR's Reprogrammable Space Network Interface Card (RSNIC) interconnect adaptor
- □Orion Vision Processing Unit (VPU) for NASA
- □JPEG2K image compression

# **Responsive Space**




Aerospace Data Storage and Processing Systems

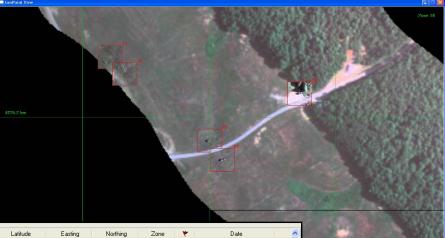
- "Responsive Space refers to the ability to rapidly achieve a specific objective through the use of space with rapidly being the operative word. The AFRL Office of Force Transformation suggested that the goal for fielding a new payload is weeks and months and not decades." [1]
- Tactical Satellite (TacSat) program building competency to achieve the Responsive Space challenge [2]
  - Joint AFRL and NRL demonstration program
  - Goal to develop capability to field inexpensive space systems in time of crisis to augment and reconstitute existing capabilities or perform entirely new tactical theater support missions
  - Key success criteria include
    - Develop low cost (\$20 million or less) mission-specific spacecraft
    - Rapid deployment with on orbit activation within six days of call up
    - Provide between six to twelve months of reliable mission operations

Lanza, et. al., "Responsive Space Through Adaptive Avionics, Responsive Space Conference, Los Angeles, CA, April 19-22, 2004.
J. Raymond, et. al., "A TacSat Update and the ORS/JWS Standard Bus," Responsive Space Conference, Los Angeles, CA, April 25-28, 2006.

# **TacSat-3 – Tactical Ops**





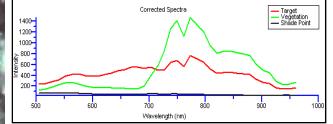

### Display and Target Cue Products Generated by OBP



Aerospace Data Storage and Processing Systems

#### Geo-registered false color HSI

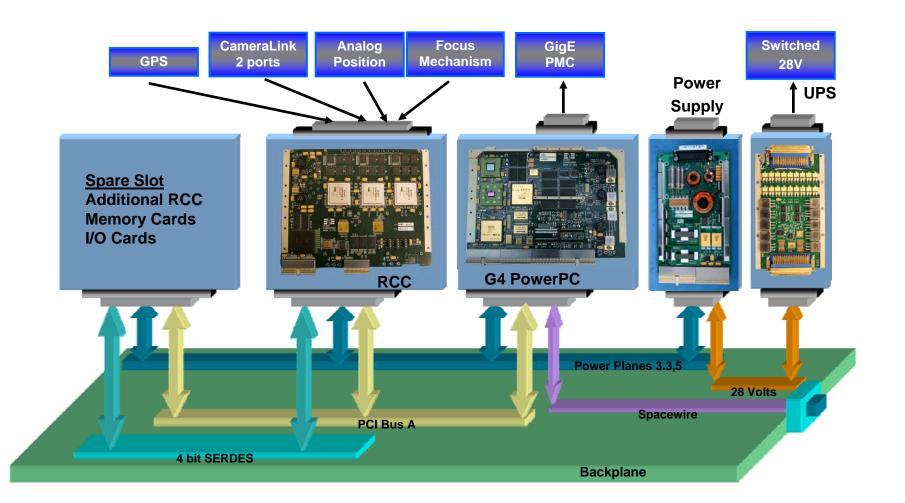
- Supports GeoPaint<sup>™</sup> display
- □Target cue reports (text data)
  - Date, time, filter ID
  - Scan, frame, pixel indices
  - Lat,Lon and UTM geolocation




|      |                   |             |             |            |             |       |            |           |            |             |      |       |                       |   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------|-------------|-------------|------------|-------------|-------|------------|-----------|------------|-------------|------|-------|-----------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID 🔺 | Source            | HSI Frame # | HSI Pixel # | HRI Line # | HRI Pixel # | Score | Longitude  | Latitude  | Easting    | Northing    | Zone | - ¥ I | Date                  | ^ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12   | MF Green-tan-net1 | 236593      | 313         | 2839116    | 3787        | 91.5  | -77.378689 | 38.167820 | 291.619991 | 4227.109164 | 18   |       | 2005/06/16 13:03:31 Z |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13   | Anomaly           | 236593      | 313         | 2839116    | 3787        | 67.2  | -77.378689 | 38.167820 | 291.619991 | 4227.109164 | 18   |       | 2005/06/16 13:03:31 Z |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14   | MF Green-tan-net1 | 236891      | 60          | 2842692    | 844         | 44.6  | -77.377895 | 38.164148 | 291.679087 | 4226.699912 | 18   |       | 2005/06/16 13:03:36 Z |   | Contraction of the local sectors of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15   | MF Truck-GreenCan | 236898      | 18          | 2842776    | 355         | 36.3  | -77.378165 | 38.163847 | 291.654616 | 4226.667075 | 18   |       | 2005/06/16 13:03:36 Z |   | And the second se |
| 16   | MF Truck-GreenCan | 237178      | 479         | 2846136    | 5718        | 38.6  | -77.371841 | 38.164145 | 292.209575 | 4226.685987 | 18   |       | 2005/06/16 13:03:40 Z |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17   | MF Green-tan-net1 | 237323      | 33          | 2847876    | 530         | 46.7  | -77.373633 | 38.160610 | 292.042458 | 4226.297602 | 18   |       | 2005/06/16 13:03:43 Z |   | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18   | MF Green-tan-net1 | 237350      | 33          | 2848200    | 530         | 44.0  | -77.373365 | 38.160366 | 292.065299 | 4226.269986 | 18   |       | 2005/06/16 13:03:43 Z |   | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19   | MF Green-tan-net1 | 237492      | 93          | 2849904    | 1228        | 44.3  | -77.371798 | 38.159417 | 292.199896 | 4226.161148 | 18   |       | 2005/06/16 13:03:46 Z |   | The Cau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20   | MF Green-tan-net1 | 237524      | 277         | 2850288    | 3368        | 39.9  | -77.370200 | 38.160140 | 292.342005 | 4226.237746 | 18   |       | 2005/06/16 13:03:46 Z |   | CALCULATION CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21   | MF Truck-GreenCan | 237520      | 92          | 2850240    | 1216        | 37.6  | -77.371563 | 38.159138 | 292.219712 | 4226.129667 | 18   |       | 2005/06/16 13:03:46 Z |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22   | MF Green-tan-net1 | 238456      | 240         | 2861472    | 2938        | 43.5  | -77.361036 | 38 153202 | 293 125337 | 4225 447295 | 18   |       | 2005/06/16 13:04:02 Z | ~ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### □Target chips

- ROI centered on detection
- Georegistered and fused false-color HSI and HRI
- Target spectra






# **TacSat-3 Architecture**



Aerospace Data Storage and Processing Systems

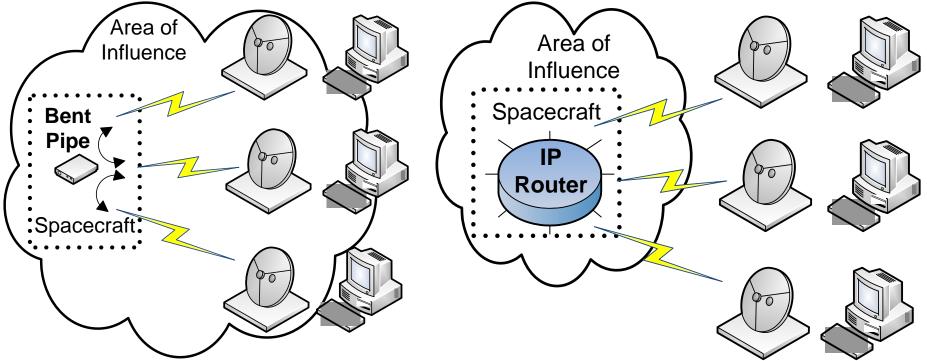


### **IRIS Project Overview**



Aerospace Data Storage and Processing Systems

- **First full-featured IP router in space**
- Supported by Joint Capability Technology Demonstrations and commercially funded
- First generation spacecraft will host one C-band and two Ku-band beams IP routing between all bands and beams
- 20 months from ATP to integration on spacecraft
  - Spacecraft integration testing completed January 2009
  - IS-14 launch scheduled for Q3 2009
- Additional generations planned with increasing capabilities
- SEAKR designed, developed IRIS hardware and was the prime integrator for Cisco's IRIS payload




Intelsat 14 c/o SS/Loral

### Background



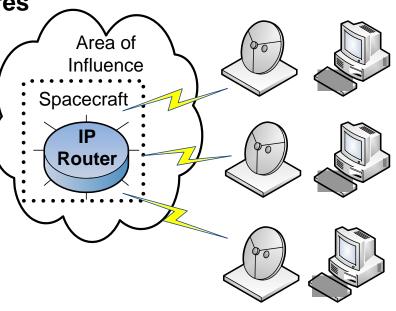




#### Bent Pipe Comms Satellite System

**IP-based Comms Satellite System** 

- **Communication systems require high performance with limited faults**
- Bent-pipe comms typically less processing complexity with limited decision making and ground-side modem often included in the overall system design
- IP-based systems built upon ground-based standards requiring complex routing decisions to be made onboard


### Background



Aerospace Data Storage and Processing Systems

□IP-based network advantages

- Standardized protocols (above physical)
  - Built-in QoS, security and EDAC features
  - Ubiquitous and extensively deployed
  - Well understood and time tested
- Virtual circuit philosophy
  - Improves scalability and throughput
  - Decentralized multicast
  - Fine-grained QoS easy to implement
- Cost-effective test and integration
  - Numerous commercial components
  - Mature test strategies and methods



**IP-based Comms Satellite System** 

### **IP in Space Challenges**



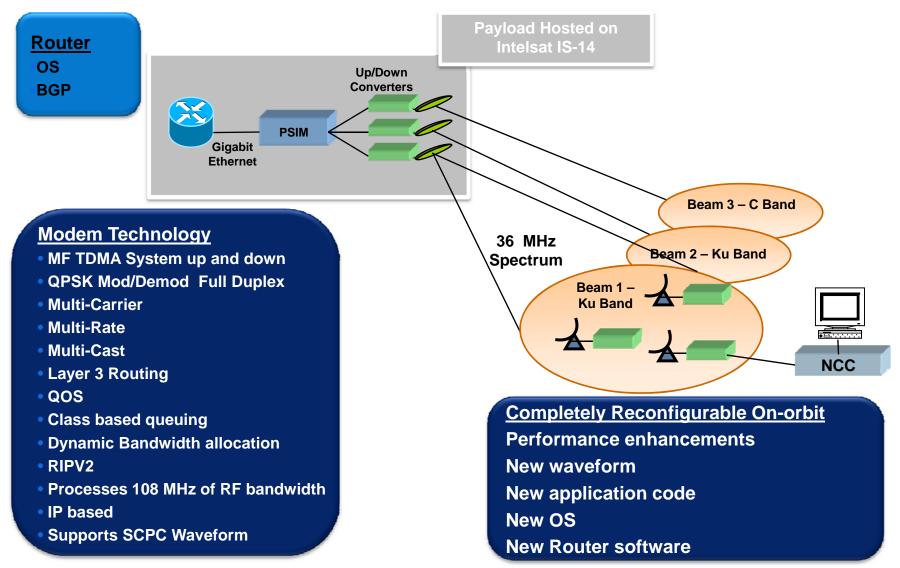
Aerospace Data Storage and Processing Systems

#### Onboard Processing

- High bandwidth MODEMS and Routers require significant processing
- On-board routed payloads have advantages but come at a cost
- High performance processing on a satellite is non-trivial and costly
  - Becomes more attractive with each new processor generation

#### 

- Supporting Type 1 comm. while retaining IP feature set on the spacecraft
  - Packet header encryption?
  - Source/destination or packet type security
  - QoS in the face of encryption?

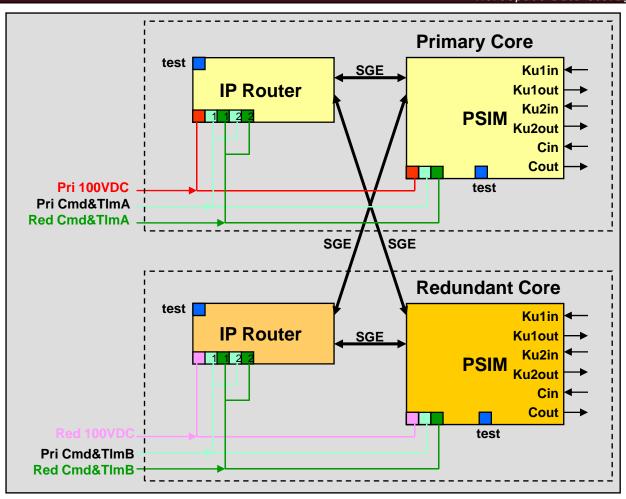

#### Ground Infrastructure

- Large investment to provide upgraded facilities (but benefits are great)
- Several MODEM protocols fielded (some proprietary) for tactical users

# **Mission System**



Aerospace Data Storage and Processing Systems




Troxel, Vaillancourt, and Murray

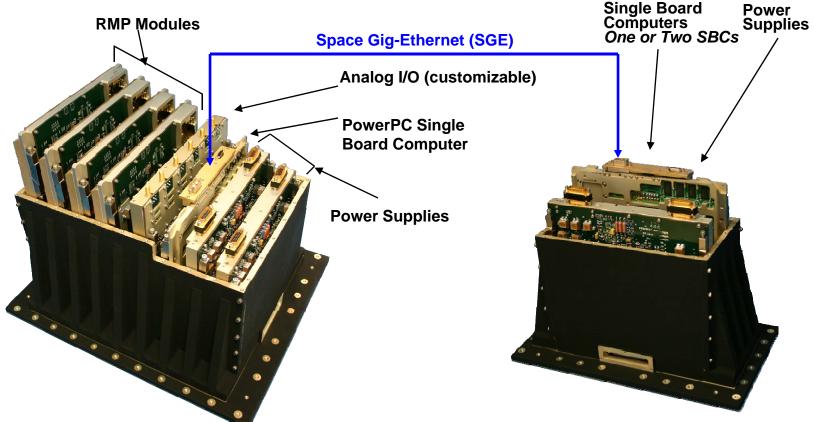
# **System Architecture**



Aerospace Data Storage and Processing Systems



#### □ Box-level redundancy with per-unit fail over


# **IRIS Flight Hardware**



Aerospace Data Storage and Processing Systems

Combination of 2 sequential processors, 12 FPGAs and analog switch card

- FPGAs provide waveform processing
- Processors provide Ethernet interfaces, packet switching
- Leveraging the advantages of each type of component



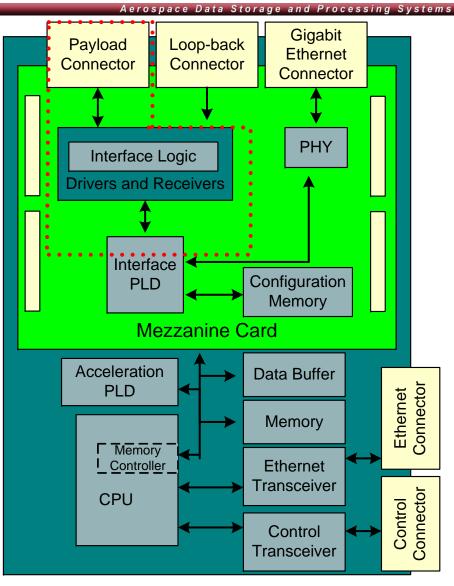


Aerospace Data Storage and Processing Systems

### □Waveform and beam agile

Design can leverage PST features for frequency agility

### **Numerous SEE mitigation options**


- Box-level redundancy with failover
- Device-level redundancy with voter
- Intra-device full or partial redundancy
- Configuration scrubbing

# On-orbit software reconfiguration planned as part of the mission to update routing features

### **RSNIC** Design



- SEAKR's SGE forms the basis for the Reprogrammable Space Network Interface Card (RSNIC) payload concept
- Merging of programmable logic and general-purpose microprocessor for network interconnect "normalization"
- All functionality required for protocol translation encapsulated with the single board plus mezzanine card
- Mezzanine card designs largely stay unchanged with only the interface-specific portions requiring augmentation



### **RSNIC** Prototype



Aerospace Data Storage and Processing Systems

- RSNIC prototype boards developed and verified
- Ethernet and payload interfaces confirmed to be operational via loopback and PC generated traffic
  - Currently supports 300Mbps bandwidth measured using IP/UDP protocol transfers

**SSR Tech. Demonstration** 

- Translated data and command traffic for the EM version of SEAKR's two-channel SSR used in NASA's Gamma-ray Large Area Space Telescope
- Demo completed in 2008



**RSNIC** Prototype

# **PST Mission Summary**



Aerospace Data Storage and Processing Systems

Programmable Satellite Transceiver (PST) provides frequency agile sat. comm.

- Each band continuously tunable
- Programmable on the ground and/or in flight

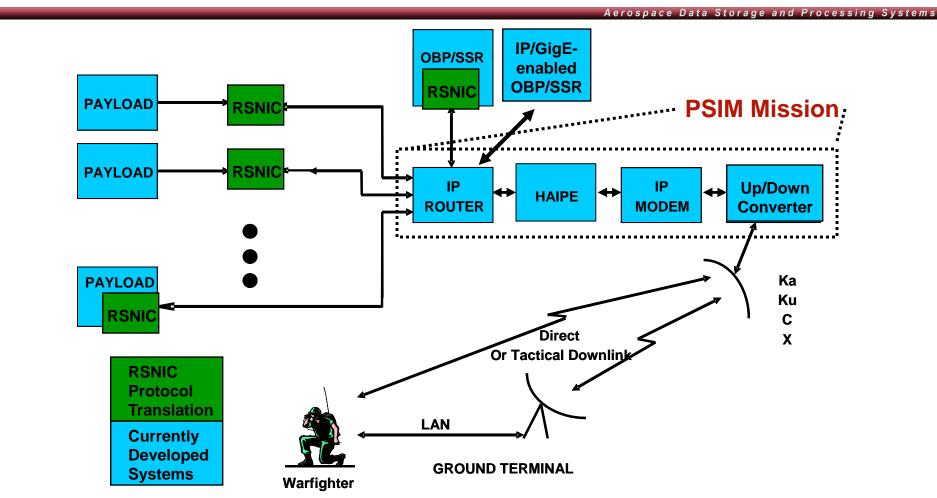
AFRL Enhanced Phase-II SBIR with EM delivered Q2'08



**PST Configuration of AIP** 

**Receiver/Uplink** 

- L-Band 1760 to 1840 MHz
- S-Band 2025 to 2120 MHz
- □ Transmitter/Downlink
  - S-Band 2200 to 2300 MHz
- □ Space Ground Link System (SGLS)
  - FSK-AM Command Uplink (1 kbps, 2 kbps)
  - Subcarrier BPSK Telemetry Downlink (256 kbps)
- □ Universal S-Band (USB)
  - Subcarrier BPSK Command Uplink (<= 4 kbps)</li>
  - Subcarrier BPSK Telemetry Downlink (256 kbps)


**Future Waveforms in development** 

□ Partnered with RT Logic

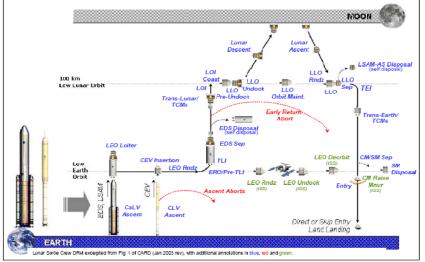
Troxel, Vaillancourt, and Murray

### **IP-enabled** Payload





Legacy protocol to IP/Ethernet translation to improve performance and scalability and enable plug-and-play payload design


# **Orion-VPU Mission Summary**



#### Aerospace Data Storage and Processing Systems

- VPU provides a reconfigurable hardware platform for processing image algorithms
  - Pose Estimation
  - Optical Navigation
  - Compression/Decompression
- Receives image data from various Relative Navigation Sensors
  - Star Tracker
  - Vision Navigation Sensor
  - Docking Camera
  - Situational Awareness Camera
- Supports rendezvous, proximity operations, docking and un-docking for ISS and Lunar missions





Images c/o Orion Program Office, NASA-Glenn



Aerospace Data Storage and Processing Systems

#### Combination of sequential processor and RCC

- Xilinx<sup>®</sup> FPGAs deployed in TMR for critical sensor algorithms
  - -Video processing algorithms (i.e. feature recognition, graphical overlay, tiling, etc.) and video compression video
- Microblaze<sup>™</sup> core coordinates algorithm cores and processor communication
- LEON<sup>™</sup> SBC dedicated to system coordination, error handling, RCC configuration and oversight and interconnect control
  - -Time-Triggered Gigabit Ethernet PMC and RS422

#### Mezzanine card provides sensor interfaces

 LVDS interfaces with access to all three FPGAs for flexibility in video stream selection and mitigation schemes

#### **Configuration scrubbing and TMR for RCC SEU mitigation**

Corrects control path corruptions

### Conclusions



Aerospace Data Storage and Processing Systems

- **Application Independent Processor developed for space** 
  - Supports the responsive space mission (e.g. TacSat-3)
  - Reconfigurable on-orbit
  - Flexible, scalable architecture

□ Mission performance reqs driving the use of commercial devices

- Low cost, high performance
- Designed for multiple missions
- Several disparate missions demonstrate design's flexibility
  - Various high-performance onboard processing
  - Spacecraft communications systems (waveform and IP routing)
- □Incorporating time-tested commercial protocols into space systems can provide cost-effective performance improvements

# **Contact Information**



Aerospace Data Storage and Processing Systems

#### **Paul Murray**

#### **Director, IP & RC Processing Programs** paul.murray@seakr.com

- Dr. Ian Troxel **Future Systems Architect** 
  - 303-784-7673

• 303-790-8499

ian.troxel@seakr.com

SEAKR Engineering, Inc. 6221 South Racine Circle Centennial, CO 80111-6427

303-790-8499 main: http://www.seakr.com web: