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Motivation

Mission requirements increasing
• Higher resolution data acquisition driving processing and storage
• Onboard processing and/or downlink often the system bottleneck
• Increased need for autonomous functionality
• System flexibility sought to limit NRE

Design challenges keeping pace
• SWaP limitations on payloads not relaxing
• Multiuse systems and payloads desired 
• Use of Commercial-Off-The-Shelf (COTS) devices

– “Rad-hard” components less cost-effective for high-performance apps
– Improved performance with mitigation to achieve fault tolerance

• System heterogeneity and increased complexity
– Reconfigurable computing devices provide flexibility and improved 

perf/Watt for amenable application classes
– General-purpose processors well suited to control and database apps.
– Special-purpose procs provide app. specificity with reduced dev. cost 
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HPEC with Flexibility 

Application Independent Processor (AIP) Features
• Mixture of general-purpose processors and RCCs
• Reconfigurable on-orbit
• Flexible, scalable architecture
• Usage of open standards
• SEE Tolerant system
• Flexible I/O architecture
Designed for Responsive Space
• Low cost, high performance
• Rapid deployment through adaptability
• Designed for multiple missions

ARTEMIS Configuration of AIP
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AIP System Architecture
Xilinx® Reconfigurable Computer Board(s)
COTS PowerPCTM–based SBC(s)
Memory and I/O personality mezzanine cards

• Flash memory, camera link, analog, digital developed to date
Flexibility to incorporate other system control and I/O capability
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AIP Personality Mezz. Card

Personality Mezzanine for 
application- specific functionality
• Lower risk/cost, quick development
• I/O and unique I/O connectors
• Memory, Logic, TMR mitigation
• Analog circuitry ADC/DAC

High speed mezzanine connectors
• 170 high speed I/O 
• Symmetrical Design to all FPGAs

Fault tolerance options
• “Rad hard” voter on the mezz.
• Partial TMR
• SEAKR replay capability provides 

temporal redundancy
• Combinations

ARTEMIS Mezzanine

AIP Mezzanine Concept
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AIP Deployments

AFRL TacSat-3 Responsive Space mission
• Raytheon’s Advanced Responsive Tactically Effective Military 

Imaging Spectrometer (ARTEMIS)
Cisco’s Internet Router In Space (IRIS)
• Space Internet Protocol Router (SIPR)
• Programmable Space IP Modem (PSIM)
AFRL Plug and Play Satellite project
• Programmable Space Transceiver (PST)
SEAKR’s Reprogrammable Space Network Interface 
Card (RSNIC) interconnect adaptor
Orion Vision Processing Unit (VPU) for NASA
JPEG2K image compression
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Responsive Space

“Responsive Space refers to the ability to rapidly achieve a 
specific objective through the use of space with rapidly being the 
operative word.  The AFRL Office of Force Transformation 
suggested that the goal for fielding a new payload is weeks and 
months and not decades.” [1]
Tactical Satellite (TacSat) program building competency to achieve 
the Responsive Space challenge [2]
• Joint AFRL and NRL demonstration program
• Goal to develop capability to field inexpensive space systems in time of 

crisis to augment and reconstitute existing capabilities or perform 
entirely new tactical theater support missions

• Key success criteria include
– Develop low cost ($20 million or less) mission-specific spacecraft
– Rapid deployment with on orbit activation within six days of call up
– Provide between six to twelve months of reliable mission operations

[1] Lanza, et. al., “Responsive Space Through Adaptive Avionics, Responsive Space Conference, Los Angeles, CA, April 19-22, 2004.
[2] J. Raymond, et. al., “A TacSat Update and the ORS/JWS Standard Bus,” Responsive Space Conference, Los Angeles, CA, April 25-28, 2006.
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TacSat-3 – Tactical Ops

Dedicated Space Capabilities Direct 
to Operational and Tactical Levels
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Display and Target Cue 
Products Generated by OBP
Geo-registered false color HSI
• Supports GeoPaintTM display

Target cue reports (text data)
• Date, time, filter ID
• Scan, frame, pixel indices
• Lat,Lon and UTM geolocation

Target chips
• ROI centered on detection
• Georegistered and fused 

false-color HSI and HRI
• Target spectra
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Spacewire

TacSat-3 Architecture
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IRIS Project Overview

First full-featured IP router in space
Supported by Joint Capability 
Technology Demonstrations and 
commercially funded
First generation spacecraft will host 
one C-band and two Ku-band beams IP 
routing between all bands and beams
20 months from ATP to integration on 
spacecraft
• Spacecraft integration testing completed 

January 2009
• IS-14 launch scheduled for Q3 2009

Additional generations planned with 
increasing capabilities
SEAKR designed, developed IRIS 
hardware and was the prime integrator 
for Cisco’s IRIS payload

Intelsat 14 c/o SS/Loral



12/26Troxel, Vaillancourt, and Murray

Background

Communication systems require high performance with limited faults
Bent-pipe comms typically less processing complexity with limited decision 
making and ground-side modem often included in the overall system design
IP-based systems built upon ground-based standards requiring complex 
routing decisions to be made onboard
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Background

IP-based network advantages
• Standardized protocols (above physical)

– Built-in QoS, security and EDAC features
– Ubiquitous and extensively deployed
– Well understood and time tested

• Virtual circuit philosophy
– Improves scalability and throughput
– Decentralized multicast
– Fine-grained QoS easy to implement

• Cost-effective test and integration
– Numerous commercial components
– Mature test strategies and methods IP-based Comms Satellite System

text
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IP in Space Challenges

Onboard Processing
• High bandwidth MODEMS and Routers require significant processing
• On-board routed payloads have advantages but come at a cost
• High performance processing on a satellite is non-trivial and costly

– Becomes more attractive with each new processor generation

Security
• Supporting Type 1 comm. while retaining IP feature set on the spacecraft

– Packet header encryption?
– Source/destination or packet type security
– QoS in the face of encryption?

Ground Infrastructure
• Large investment to provide upgraded facilities (but benefits are great)
• Several MODEM protocols fielded (some proprietary) for tactical users
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Mission System

NCC
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Modem Technology
• MF TDMA System up and down
• QPSK Mod/Demod  Full Duplex
• Multi-Carrier
• Multi-Rate
• Multi-Cast
• Layer 3 Routing
• QOS
• Class based queuing
• Dynamic Bandwidth allocation 
• RIPV2
• Processes 108 MHz of RF bandwidth
• IP based
• Supports SCPC Waveform

Router
•OS
•BGP

Completely Reconfigurable On-orbit
Performance enhancements
New waveform
New application code
New OS
New Router software
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System Architecture

Box-level redundancy with per-unit fail over
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IRIS Flight Hardware

Combination of 2 sequential processors, 12 FPGAs and analog switch card
• FPGAs provide waveform processing
• Processors provide Ethernet interfaces, packet switching
• Leveraging the advantages of each type of component

Power Supplies

PowerPC Single 
Board Computer

Analog I/O (customizable)

RMP Modules
Single Board
Computers
One or Two SBCsSpace Gig-Ethernet (SGE)
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IRIS Hardware Flexibility

Waveform and beam agile
• Design can leverage PST features for frequency agility

Numerous SEE mitigation options
• Box-level redundancy with failover
• Device-level redundancy with voter
• Intra-device full or partial redundancy
• Configuration scrubbing

On-orbit software reconfiguration planned as 
part of the mission to update routing features
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RSNIC Design

SEAKR’s SGE forms the basis for 
the Reprogrammable Space 
Network Interface Card (RSNIC) 
payload concept
Merging of programmable logic 
and general-purpose 
microprocessor for network 
interconnect “normalization”
All functionality required for 
protocol translation encapsulated 
with the single board plus 
mezzanine card
Mezzanine card designs largely 
stay unchanged with only the 
interface-specific portions 
requiring augmentation
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RSNIC Prototype

RSNIC prototype boards 
developed and verified
Ethernet and payload 
interfaces confirmed to be 
operational via loopback and 
PC generated traffic
• Currently supports 300Mbps 

bandwidth measured using 
IP/UDP protocol transfers

SSR Tech. Demonstration
• Translated data and command 

traffic for the EM version of 
SEAKR’s two-channel SSR 
used in NASA’s Gamma-ray 
Large Area Space Telescope

• Demo completed in 2008

RSNIC Prototype
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PST Mission Summary
Programmable Satellite 
Transceiver (PST) provides 
frequency agile sat. comm.

• Each band continuously 
tunable

• Programmable on the ground 
and/or in flight

AFRL Enhanced Phase-II 
SBIR with EM delivered Q2‘08

Receiver/Uplink
• L-Band 1760 to 1840 MHz
• S-Band 2025 to 2120 MHz

Transmitter/Downlink
• S-Band 2200 to 2300 MHz

Space Ground Link System (SGLS)
• FSK-AM Command Uplink (1 kbps, 2 kbps)
• Subcarrier BPSK Telemetry Downlink (256 kbps)

Universal S-Band (USB)
• Subcarrier BPSK Command Uplink (<= 4 kbps)
• Subcarrier BPSK Telemetry Downlink (256 kbps)

Future Waveforms in development

Partnered with RT Logic
PST Configuration of AIP
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IP-enabled Payload

Legacy protocol to IP/Ethernet translation to improve performance and 
scalability and enable plug-and-play payload design
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Orion-VPU Mission Summary

VPU provides a reconfigurable 
hardware platform for processing 
image algorithms
• Pose Estimation
• Optical Navigation
• Compression/Decompression

Receives image data from various 
Relative Navigation Sensors
• Star Tracker
• Vision Navigation Sensor
• Docking Camera
• Situational Awareness Camera

Supports rendezvous, proximity 
operations, docking and un-docking 
for ISS and Lunar missions

Images c/o Orion Program Office, NASA-Glenn
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ORION-VPU Highlights

Combination of sequential processor and RCC
• Xilinx® FPGAs deployed in TMR for critical sensor algorithms

– Video processing algorithms (i.e. feature recognition, graphical 
overlay, tiling, etc.) and video compression video

• MicroblazeTM core coordinates algorithm cores and processor 
communication

• LEONTM SBC dedicated to system coordination, error handling, 
RCC configuration and oversight and interconnect control 
– Time-Triggered Gigabit Ethernet PMC and RS422

Mezzanine card provides sensor interfaces
• LVDS interfaces with access to all three FPGAs for flexibility in 

video stream selection and mitigation schemes
Configuration scrubbing and TMR for RCC SEU mitigation
• Corrects control path corruptions
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Conclusions

Application Independent Processor developed for space
• Supports the responsive space mission (e.g. TacSat-3)
• Reconfigurable on-orbit
• Flexible, scalable architecture

Mission performance reqs driving the use of commercial devices
• Low cost, high performance
• Designed for multiple missions

Several disparate missions demonstrate design’s flexibility
• Various high-performance onboard processing
• Spacecraft communications systems (waveform and IP routing)

Incorporating time-tested commercial protocols into space systems 
can provide cost-effective performance improvements
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