

The Future of FPGAs

Rajit Manohar
Computer Systems Lab
Cornell University, Ithaca, NY 14853
http://vlsi.cornell.edu/

Chief Scientist
Achronix Semiconductor Corp.
http://www.achronix.com/

http://vlsi.cornell.edu
http://vlsi.cornell.edu
http://www.achronix.com
http://www.achronix.com

System complexity in VLSI

Year Name Transistors

1982 80286 134,100

1985 80386 275,000

1993 Pentium 3.1 million

1995 Pentium Pro 6 million

1998 Pentium III 9.5 million

2000 Pentium IV 42 million

2002 McKinley 243 million

2005 Montecito 1.7 billion

2020 ???? ~50 billion

Source: Intel, IBM

CPU frequency scaling

0

1000

2000

3000

4000

1990 1994 1998 2002 2006 2010

Processor Frequencies

Source: Intel, IBM

Year

Fr
eq

ue
nc

y
(M

H
z)

What did CPUs do with the transistors?

• Improved throughput while preserving a sequential programming model

❖ Multi-cycle

❖ Pipelined

❖ Superscalar

❖ Out-of-order

❖ Multi-threaded

Today’s supercomputers use commodity
microprocessors as building-blocks

A A AAA

A A A AA

BBB B B

BB BB B

FPGA architectures

CB

CB

CB

CB

SB

SB

CB

CB

CB

CB

SB

SB

LB

LB

LB

LB

CB

CB

CB

CB

SB

SB

CB

CB

CB

CB

SB

SB

LB

LB

LB

LB

FPGA frequency scaling

Source: Intel, IBM, Xilinx, Altera datasheets

0

750

1500

2250

3000

1990 1992 1996 1998 2000 2002 2004 2006 2007 2008

Year

Fr
eq

ue
nc

y
(M

H
z)

CPU FPGA

What did FPGAs do with the transistors?

• Basic lookup-table (LUT) / flip-flop (FF) / carry-chain

• Embedded multiplier

• Embedded memory

• Embedded processor

• DSP slices

• Hardened I/Os

• Larger LUT configurations

• ... more logic
... reduce logic depth

LUT F
F

MULT
MAC /

DSP

MEM

Seems simple compared to CPUs...

Routing versus logic

6. Results

In this section we describe the use of GILES to build several

tiles and make comparisons to two commercial devices. These

comparisons will be based on a 0.18µm CMOS process [18].

Figure 8 shows the placement and compaction of a simple

architecture that consists of four 4-input lookup table and flip flop

basic logic elements, 16 length 4 tracks with buffered switches

and 16 length 4 tracks with un-buffered switches, Fs=3,

Fcin=0.56 and Fcout=1 [3]. It is interesting to look at this picture

in colour (which you can do if you are reading this paper onscreen

or have printed it in colour) with the legend given in Table 1 and

see where different types of the cells are placed.

Figure 8 – Placement of 4x4-LUT Architecture

Cell Type Colour

Buffer Green

Configuration SRAM Red

Multiplexer Pink

LUT Purple

Flip-Flop Light Blue

Pass Transistor Switch White

Buffered Switch Grey

Table 1 – Colour Legend for Placement Picture

For this architecture we did not do the full transistor layout,

but rather approximated cell areas as described in Section 3.

Figure 9 shows the full placed and routed layout of this same tile.

This tile required 7 layers of metal (excluding routing for the

specialized networks but including power, ground, and clock

routing between cells), and took up dimensions 84 x 81µm. Table

2 gives a set of results for ten automatically generated FPGA tiles.

The table gives the number of 4-input lookup tables per cluster

and the number of tracks per channel specified in the architecture

file. Half the tracks are length four buffered segments and half are

un-buffered. The number of metal layers indicated in Table 2 is

one greater than the number the tool used; the extra layer is added

to try to account for the specialized distribution networks, as

discussed earlier.

The number of tracks is selected to be a reasonable number

from our previous experimental experience. The fourth and fifth

column give the value of the connection block input and output

flexibility. In all ten examples, the switch block flexibility, Fs, is

3. We give the number of metal layers required to route the tile,

including the metal used to route within the basic cells and the

power and ground routing. The next three columns give the

dimensions and area of the tile. The final column gives the

runtime of the entire tool in seconds on a 1GHz Pentium 3

processor. Table 2 illustrates the power of our tool, which can

layout radically different architectures.

Figure 9 - Routed 4x4-LUT Architecture

LUTs

Track Fc In

Fc

Out

Metal

Layers

Tile

Width

(um)

Tile

Height

(um)

Final

Routed

Area

(um2)

Total

Run

Time

(s)

1 32 0.56 1.00 7 84 81 6805 113

2 56 0.44 0.50 8 115 108 12430 585

3 80 0.30 0.33 8 143 134 19100 1174

4 96 0.23 0.25 8 169 154 25983 4029

5 120 0.19 0.20 8 184 179 32935 4520

6 144 0.15 0.17 8 209 203 42392 8889

7 160 0.13 0.14 8 249 228 56821 18427

8 176 0.11 0.13 8 246 255 62717 14755

9 192 0.10 0.11 8 261 281 73126 23397

10 200 0.10 0.10 8 304 275 83557 30475

Table 2 – Architectural Specifcation and Layout

Results for Ten Different FPGAs

6.1 Metal Layers – Area Tradeoff

One interesting use of GILES is to have it measure the trade-

off between number of metal layers and the achieved final area.

Figure 10 is a plot of the final placed and routed area achieved vs.

number of inter-cell metal routing layers, for the first six

Source: Rose et al., FPGA 2003

Type Color

Buffer Green

Config SRAM Red

Mux Pink

Switch White/Grey

LUT Purple

Flop Blue

... so why not keep adding sophisticated logic blocks?

FPGAs are supposed to be general

• Hard macro versus more lookup-tables

❖ How often is the macro used v/s loss of general logic functionality

• It’s about the tools

❖ Can they determine how to use the macro block?
 ... automatically?

❖ How useful is the function for a wide range of applications?

❖ Will designers modify their RTL to accommodate it?

• Many attempts at this...

❖ The curse of success: there is a large installed base of legacy RTL

FPGA performance loss

• Imperfect placement and routing can create major performance issues

• Architecture looks “tiled” and regular
 ... but electrically, the architecture is not “tiled”

v/s

signal path

Increasing FPGA performance

• Don’t map gates and wires, but functionality

• Lessons from high-performance asynchronous logic

❖ Standard circuit styles or “templates”

❖ Data-driven computation: static dataflow

• Use pipelined circuits for the asynchronous
FPGA

High-performance MIPS
processor (1998)

Ultra low power sensor
network processor (2004)

An asynchronous FPGA architecture

• Implement a dataflow FPGA with asynchronous logic

pipeline
stage

pipeline
stage

Pipelined dataflow

Fun with liquid Helium

Results

77K

 200

 400

 600

 800

 1000

 1200

 0.5 1 1.5 2 2.5
Voltage (V)

Xilinx Virtex

400K

Asynchronous FPGA Test Data
Process: TSMC 0.18um

Th
ro

ug
hp

ut
 (M

Hz
) Nominal Vdd: 1.8V

294K

12K

 0

FPGA frequency scaling

0

750

1500

2250

3000

1990 1992 1996 1998 2000 2002 2004 2006 2007 2008

CPU
FPGA
AFPGA

Year

Fr
eq

ue
nc

y
(M

H
z)

research
prototype

commercial
product

FPGA trends

• FPGAs can always use more transistors!

❖ Area overhead v/s an ASIC is high

❖ More transistors = larger designs possible

❖ Leakage is the major issue

• Hard macros

❖ Mainly for I/Os (e.g. memory controllers)

‣ Avoid the tools issue!

❖ “Core generator” that targets hard macros (e.g. DSP blocks)

‣ Are there other “common” core generators / macro blocks?

• Another use for transistors: pipelined architecture

❖ Eliminate global signals

❖ Improve throughput

• Complex architectures seem unlikely

Summary

• FPGAs have a bright future!

• Differentiation into

❖ Large LUT-count FPGAs

❖ Low cost FPGAs (low LUT-count, low performance)

❖ Medium LUT-count but high-performance FPGAs

• FPGAs can use all the transistors they can get

