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System complexity in VLSI

Year Name Transistors

1982 80286 134,100

1985 80386 275,000

1993 Pentium 3.1 million

1995 Pentium Pro 6 million

1998 Pentium III 9.5 million

2000 Pentium IV 42 million

2002 McKinley 243 million

2005 Montecito 1.7 billion

2020 ???? ~50 billion

Source: Intel, IBM



 

CPU frequency scaling
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What did CPUs do with the transistors?

• Improved throughput while preserving a sequential programming model

❖ Multi-cycle

❖ Pipelined

❖ Superscalar

❖ Out-of-order

❖ Multi-threaded

Today’s supercomputers use commodity 
microprocessors as building-blocks
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FPGA architectures
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FPGA frequency scaling

Source: Intel, IBM, Xilinx, Altera datasheets
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What did FPGAs do with the transistors?

• Basic lookup-table (LUT) / flip-flop (FF) / carry-chain

• Embedded multiplier

• Embedded memory

• Embedded processor

• DSP slices

• Hardened I/Os

• Larger LUT configurations

• ... more logic
... reduce logic depth

LUT F
F

MULT
MAC / 

DSP

MEM

Seems simple compared to CPUs...



 

Routing versus logic

6. Results 

In this section we describe the use of GILES to build several 

tiles and make comparisons to two commercial devices. These 

comparisons will be based on a 0.18µm CMOS process [18]. 

Figure 8 shows the placement and compaction of a simple 

architecture that consists of four 4-input lookup table and flip flop 

basic logic elements, 16 length 4 tracks with buffered switches 

and 16 length 4 tracks with un-buffered switches, Fs=3, 

Fcin=0.56 and Fcout=1 [3]. It is interesting to look at this picture 

in colour (which you can do if you are reading this paper onscreen 

or have printed it in colour) with the legend given in Table 1 and 

see where different types of the cells are placed. 

 

  

Figure 8 – Placement of 4x4-LUT Architecture 

 
Cell Type Colour 

Buffer Green 

Configuration SRAM Red 

Multiplexer Pink 

LUT Purple 

Flip-Flop Light Blue 

Pass Transistor Switch White 

Buffered Switch Grey 

Table 1 – Colour Legend for Placement Picture 

For this architecture we did not do the full transistor layout, 

but rather approximated cell areas as described in Section 3. 

Figure 9 shows the full placed and routed layout of this same tile. 

This tile required 7 layers of metal (excluding routing for the 

specialized networks but including power, ground, and clock 

routing between cells), and took up dimensions 84 x 81µm. Table 

2 gives a set of results for ten automatically generated FPGA tiles. 

The table gives the number of 4-input lookup tables per cluster 

and the number of tracks per channel specified in the architecture 

file. Half the tracks are length four buffered segments and half are 

un-buffered. The number of metal layers indicated in Table 2 is 

one greater than the number the tool used; the extra layer is added 

to try to account for the specialized distribution networks, as 

discussed earlier. 

The number of tracks is selected to be a reasonable number 

from our previous experimental experience. The fourth and fifth 

column give the value of the connection block input and output 

flexibility. In all ten examples, the switch block flexibility, Fs, is 

3. We give the number of metal layers required to route the tile, 

including the metal used to route within the basic cells and the 

power and ground routing. The next three columns give the 

dimensions and area of the tile. The final column gives the 

runtime of the entire tool in seconds on a 1GHz Pentium 3 

processor. Table 2 illustrates the power of our tool, which can 

layout radically different architectures. 

 

Figure 9 - Routed 4x4-LUT Architecture 

 

# 

LUTs

# 

Track Fc In

Fc 

Out

Metal 

Layers

Tile 

Width 

(um)

Tile 

Height 

(um)

Final 

Routed 

Area 

(um2)

Total 

Run 

Time 

(s)

1 32 0.56 1.00 7 84 81 6805 113

2 56 0.44 0.50 8 115 108 12430 585

3 80 0.30 0.33 8 143 134 19100 1174

4 96 0.23 0.25 8 169 154 25983 4029

5 120 0.19 0.20 8 184 179 32935 4520

6 144 0.15 0.17 8 209 203 42392 8889

7 160 0.13 0.14 8 249 228 56821 18427

8 176 0.11 0.13 8 246 255 62717 14755

9 192 0.10 0.11 8 261 281 73126 23397

10 200 0.10 0.10 8 304 275 83557 30475  

Table 2 –  Architectural Specifcation and Layout 

Results for Ten Different FPGAs 

6.1 Metal Layers – Area Tradeoff 

One interesting use of GILES is to have it measure the trade-

off between number of metal layers and the achieved final area. 

Figure 10 is a plot of the final placed and routed area achieved vs. 

number of inter-cell metal routing layers, for the first six 

Source: Rose et al., FPGA 2003

Type Color

Buffer Green

Config SRAM Red

Mux Pink

Switch White/Grey

LUT Purple

Flop Blue

... so why not keep adding sophisticated logic blocks?



 

FPGAs are supposed to be general

• Hard macro versus more lookup-tables

❖ How often is the macro used v/s loss of general logic functionality

• It’s about the tools

❖ Can they determine how to use the macro block?
  ... automatically?

❖ How useful is the function for a wide range of applications?

❖ Will designers modify their RTL to accommodate it?

• Many attempts at this...

❖ The curse of success: there is a large installed base of legacy RTL



 

FPGA performance loss

• Imperfect placement and routing can create major performance issues

• Architecture looks “tiled” and regular
 ... but electrically, the architecture is not “tiled”

v/s

signal path



 

Increasing FPGA performance

• Don’t map gates and wires, but functionality

• Lessons from high-performance asynchronous logic

❖ Standard circuit styles or “templates”

❖ Data-driven computation: static dataflow

• Use pipelined circuits for the asynchronous
FPGA

High-performance MIPS 
processor (1998)

Ultra low power sensor 
network processor (2004)



 

An asynchronous FPGA architecture

• Implement a dataflow FPGA with asynchronous logic

pipeline
stage

pipeline
stage

Pipelined dataflow



 

Fun with liquid Helium



 

Results
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FPGA frequency scaling
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FPGA trends

• FPGAs can always use more transistors!

❖ Area overhead v/s an ASIC is high

❖ More transistors = larger designs possible

❖ Leakage is the major issue

• Hard macros

❖ Mainly for I/Os (e.g. memory controllers)

‣ Avoid the tools issue!

❖ “Core generator” that targets hard macros (e.g. DSP blocks)

‣ Are there other “common” core generators / macro blocks?

• Another use for transistors: pipelined architecture

❖ Eliminate global signals

❖ Improve throughput

• Complex architectures seem unlikely



 

Summary

• FPGAs have a bright future!

• Differentiation into 

❖ Large LUT-count FPGAs

❖ Low cost FPGAs (low LUT-count, low performance)

❖ Medium LUT-count but high-performance FPGAs

• FPGAs can use all the transistors they can get


