
IntroductionGOALS:

To improve the Quality of Service (QoS)
for the JBI platform and endpoints

E.g., latency, fault tolerance, scalability,
graceful degradation

Includes QoS of interactions JBI⇔endpoint

APPROACH:

Build on QoS-aware middleware

Examined Java Message Service (JMS)
and Real-Time Java (e.g., RTSJ)

Currently using OMG Data Distribution
Service (DDS)

Completed work: Demonstrate feasibility of proposed architecture

IDL generation from supported XML schemas

Prototype of XML IO conversion

DDS predicate generation from supported XPath predicates

Potential next steps:

Automate generation of XML IO conversion code

Automate compilation of generated source code

Dynamically load generated code

Evaluate expressability of XML schema and XPath predicates, as used
by JBI, when converted to IDL and DDS predicates

Pub
Catcher

Broker
#1

Broker
#2

Disseminator (s)

Pub
Catcher

Broker
#1

Broker
#2

JBI Client 4
(subscriber)

IOType: ImageInfo

JBI Client 1
(publisher)

IOType: ImageInfo

JBI
Server 1

XML
C++ binary

Legend
JBI Client 3
(subscriber)

IOType: ImageInfo

JBI Client 2
(subscriber)

IOType: SARInfo

Broker #1 in each JBI
Server is servicing clients
subscribing to ImageInfo
objects

Predicate
Match

Predicate
Mismatch

1

2

2

3

4
5

6

JBI
Server 2

1. JBI Client 1 publishes an
ImageInfo object

2. PubCatcher converts XML to
C++ binary and sends a
DDS publication to local
brokers and other JBI
server’s PubCatchers

3. PubCatcher on JBI Server 2
sends a DDS publication to
brokers on its local DDS
Domain

4. JBI Client 4’s predicate
doesn’t match

5. Broker converts back to XML
to send to Disseminator

6. Disseminator forwards
publication to JBI Client 3

Disseminator (s)

Processing an Information Object (IO)
Questions/Challenges:

Can important pieces of JBI be implemented with DDS?

DDS does not include centralized brokering

DDS does not include archival data (a limit to queries)

Can better QoS properties be attained with DDS?

Note: DDS QoS parameters useful such as Deadline, Reliability,
Latency Budget, Resource Limits, etc.

Original Proposed JBI/DDS Architecture

Bandwidth Savings: Transmitting C++ binary data rather
than XML

Brokering Savings: Parse an IO once and do most predicate
evaluation in DDS

JBI/DDS Architecture Implementation

Introduction of New Information Object Type

New IO Type

Parse XML Schema

Generate IDL (Interface Definition
Language) structure

Compile into DDS-
compatible C++ code

Generate XML to
C++ conversion code

Generate C++ to
XML conversion code

XML
Schema

Generated
object code

Compile

JBI Client Pub JBI Client Sub

JBI Client Pub JBI Client Sub

JBI Server (s)
(Using DDS)

...
...

Difficulties

Security – dynamic code generation

Aggressive application of DDS

Interim experiment:

The 100X JBI uses “JBI Connectors” to connect multiple 100X servers

Apply DDS in a less aggressive manner

See right panel

The 100X JBI Connector
• Executes alongside 100X JBI servers
• Connects multiple 100X JBI servers

Above: Three 100X JBI servers and their connectors.

The DDS/JBI Connector
• Candidate scheme for integration
• TAO DDS is utilized between JBI servers
• The DDS code is transparent to the JBI servers

and JBI clients

• Providing QoS-enabled dissemination between multiple
JBI servers and compression of JBI IOs

• The dashed connections between the DDS/JBI
Connectors and the DCPSInfoRepo are part of the TAO
DDS architecture

• All JBI IO types are represented with just one DDS
message type and, currently, one DDS topic.

• Performance results (latency) were obtained for the
100X Connector, the DDS/JBI Connector with
compression, and the DDS/JBI Connector without
compression

– Message type of approximately one kilobyte in size
– Most of the latency can be attributed to network

communication time for both the 100X and DDS/JBI
Connector and not to the overhead of the connectors

Above: Three 100X JBI servers and DDS/JBI connectors.

TAO DDS
• Currently supports five of the 22 QoS policies defined

in the DDS specification
• History/Durability

– Whether samples are discarded by DDS after
being sent to all known subscribers or if a certain
number of samples is kept to send to late-joining
subscribers

– Verified with a three-node configuration
experiment to allow a new Connector or a
restarted Connector to get a snapshot of the past

• Liveliness
– Supports the Automatic setting, which indicates that

DDS should periodically poll participants at a
configurable interval

– When an SSH tunnel is broken or a DDS/JBI
Connector exits, the DDS components on the nodes
are notified within the lease duration. Notification is
also given to the DDS components when the
DDS/JBI Connector which was previously not
reachable is again reachable (the SSH tunnel is
restored and/or the DDS/JBI Connector restarts).

– One major issue identified: there is no mechanism
within the current JBI with which the DDS/JBI
Connector can communicate to indicate liveliness
information. That is, the DDS/JBI Connector has no
way of notifying the JBI that a node has gone down
or reappeared.

• Reliability and Resource Limits:
– Only the use of TCP transports with Reliability as

Reliable ensured message delivery. Other settings
resulted in samples being dropped in cases of heavy
load for tests (or error message indicating that the
maximum blocking time has been exceeded).

• Later renamed to OpenDDS

	Slide Number 1
	Slide Number 2

