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Introduction

We introduce a parallelization scheme for rapid and
high-resolution image formation via non-uniform fast
Fourier transform (NUFFT) with radial data in the
frequency domain, utilizing modern multicore proces-
sors. Frequency data sampled in radial fashion are
seen in certain synthetic aperture radar systems and
medical imaging systems. In a typical NUFFT al-
gorithm for image formation, the conventional fast
Fourier transform (FFT) is preceded by a convolu-
tion step that translates the frequency samples to the
Cartesian grid points designated for the FFT. With re-
spect to any specified accuracy requirement, the trans-
lation step exploits the locality in spatial support of
chosen convolution kernel functions so that the num-
ber of arithmetic operations in sample translation is
linearly proportional to the size of the sample ensem-
ble. The parallelization scheme consists of data parti-
tion, execution scheduling and mutual exclusion rules.
It is implemented on two modern multicore processors.
We discuss also on alternative parallelization strate-
gies.

Algorithm description

We may describe a forward discrete Fourier transform
(DFT) as follows,

v(T ) := F(T, S)u(S), (1)

where u(S) denotes the values of the source data sam-
pled over the point set S; v(T ), the target data eval-
uated over the point set T ; and F(T, S), the DFT
matrix specific to S and T . The values in u may de-
pend on both measurements and numerical quadra-
ture weights. Unlike the inverse DFT, the inverse

NUDFT may be carried out by an iterative process
with a sequence of forward NUDFTs. We focus there-
fore on the forward evaluation of (1).

A NUFFT algorithm reduces the arithmetic com-
plexity in direct evaluation of (1) to the same order as
the FFT, by an approximate factorization with sparse
or structured matrix factors, see the seminal papers in
[1] and [2] for the principle idea and analysis. For im-
age formation the approximate factorization may be
expressed as follows,

c(T )� v(T ) = F(T, T̃ ) ·C(T̃ , S) · u(S) + E,
max

t∈T,s∈S
|E(t, s)| < ε, (2)

where C(S̄, S)u(S) are the data translated from the
sampling points in S to S̄ (the Cartesian grid points
in the frequency domain), F(T, S̄) is the conventional
DFT matrix of size |T | = |S̄|, � denotes elementwise
multiplication or scaling, and c(T ) is the nonzero scal-
ing function c(t) over T , which corresponds to the con-
volution kernel function C(t, s) over S× S̄. It is deter-
mined that |S̄| = α|S| with α > 1 as the oversampling
factor, which is often less than 2 for three-dimensional
sample translation.

Besides the well-understood structures in the scal-
ing and in the DFT, the translation matrix factor
C(S̄, S) is sparse. Every column has at most w3

c non-
zero elements, with three-dimensional data. A con-
volution kernel function C(t, s) with local support of
diameter wc is chosen to meet the accuracy require-
ment specified by ε, independent of the size |S| or |T | .
Therefore, the total number of arithmetic operations
for the sample translation is linearly proportional to
|S|, with to ε, and the complexity for an entire NUFFT
is O(|T | log(|T |)) + O(|S|).

We describe next the datum sets in the image forma-
tion problem under consideration. The image in spa-
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tial domain is formed in voxels, on equally spaced lo-
cations in Cartesian coordinates. The frequency data
are acquired in radials. The samples along a ray be-
tween the origin and an end point on the sphere are
equally spaced. The trajectory of the end points is
specified.

Parallelization

With the FFT made available on many existing
multicore processors, the parallelization of NUFFTs
is primarily on the sample translation, u(S̄) :=
C(S̄, S)u(S). The platform for parallel NUFFT is as-
sumed to support multi-thread programming at the
user interface level. In particular, both the source
data and the target data are shared and accessed by
multiple threads.

Two key components in the parallel NUFFT are
data partition and parallel scheduling. In data par-
tition, we explore the potential concurrency in com-
putation. For numerical correctness, data partition
and parallel scheduling must support mutual exclusion
in data updates. Initially, we partition the frequency
space within the sphere into octants, with partition
boundaries on the axial planes. This partition applies
to both S and S̄. A modification to this octal partition
is necessary to avoid faults in concurrent modifications
to the same datum. Specifically, a single source sam-
ple at sj effects up to wc translated samples on the
Cartesian grid.

u(s̄k) = u(s̄k) + C(s̄k, sj)u(sj),
‖s̄k − sj‖∞ < wc/2.

(3)

A Cartesian grid point on or close to the axial planes
gets updated by its source neighbor points in more
than one octants. Its datum value is therefore subject
to potential errors in concurrent updating.

We establish an exclusion buffer between the oc-
tants. The source samples in each octant are either
in an interior portion or in the buffer. Any sample in
the interior portions is at least wc/2 away from any
other octant. We then impose a temporal or schedul-
ing condition that the translation of the samples in an
octant interior portion be not concurrent with that in
the buffer. For instance, the translation of the interior
samples may be carried out by up to eight threads,

without any overlap in their accesses to the Carte-
sian grid points. This may be followed or preceded
by the translation of the buffer samples. This simple
scheme is implemented on a G5 quad-core processor
at 2.5 GHz with 12 GB RAM and an AMD Opteron 8-
core processor at 3.0 GHz with 8GB RAM. There are
421 million samples in the radial data, from a medical
imaging application. The execution time on the 8-core
processor is reduced by 7.33 times.

Consider next on multithreading the translation of
the buffer samples as well. This entails a further par-
tition in source data and a scheduling rule for mutual
exclusion in memory accesses and data updates. We
categorize the buffer samples according to their de-
grees in octant interaction. A buffer sample is said
to have interaction degree 2 if it is between two and
only two interior octants. Geometrically, the source
samples of degree 2 occupy 12 plate zones, each axial
plane is associated with 4 of the plates. The source
samples of degree 4 fill the pencil gaps between any
two degree-2 buffer zones, with 2 pencils along each
axis. Finally, the remaining buffer samples are at or
around the origin, with degree 8 in octant interaction.
In retrospect, the degree of the interior samples is 1.

In short summary, the three-dimensional radial
samples can be spatially partitioned into 8 octant in-
terior portions (degree-1 zones), 12 plates (degree-2
zones), 6 pencils (degree-4 zones) and 1 center zone
(degree-8). In parallel scheduling, the mutual exclu-
sion condition can be satisfied by the unified rule :
no permission of concurrent translations from source
samples in zones of different interaction degrees. Al-
ternative parallelization strategies will be discussed at
the presentation.
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