Rad Hard By Software for Space Multicore Processing

David Bueno, Eric Grobelny, Dave Campagna, Dave Kessler, and Matt Clark Honeywell Space Electronic Systems, Clearwater, FL

> HPEC 2008 Workshop September 25, 2008

- Future payloads can be expected to require high performance data processing
- Traditional component hardening approaches to rad hard processing suffer several key drawbacks
 - Large capability gap between rad hard and COTS processors
 - Poor SWaP characteristics vs. processing capacity
 - Extremely high cost vs. processing capacity
 - Dissimilarity with COTS technology drives high-cost software development units
- Honeywell Rad Hard By Software (RHBS) approach solves these problems by moving most data processing to high performance COTS single board computers
 - Leading edge capability
 - Software fault mitigation = less hardware = reduced SWaP
 - Inexpensive
 - No difference between development and flight hardware

What is Rad Hard By Software?

Honeywell

- Dependable Multiprocessor (DM) is Honeywell's first-generation Rad Hard By Software technology
- Coarse-grained software-based fault detection and recovery
 - Similar to the way modern communication protocols detect errors at the packet rather than the byte level
 - Rad Hard By Software detects errors at the "operation" rather than the instruction level
- Typical system
 - One low-performance rad-hard SBC for "cluster" monitoring and severe upset recovery
 - Could also serve as spacecraft control processor
 - One or more high-performance COTS SBCs for data processing
 - Connected via high-speed interconnects
 - One or more fault-tolerant storage/memory cards for shared memory
 - Dependable Multiprocessing (DM) software stack

This work applies DM to multicore/multiprocessor targets including the PA Semi PA6T-1682M, Freescale 8641D, and IBM 970FX

Poster Summary

- DM provides a low-overhead approach for increasing availability and reliability of COTS hardware in space
 - DM easily portable to most Linux-based platforms
 - 7447a processing platform selected near start of NASA/JPL ST8 program (DM), but better options now exist
- Modern processing platforms provided impressive overall speedups for existing DM applications no additional development effort
 - ~5-6x speedup vs. existing 7447a-based DM platform
 - Leverages optimized libraries for SIMD and multiprocessing
 - ~2-3x gain in throughput density (MFLOPS/W) vs. existing DM solution
 - ~20-40x performance of state-of-the-art rad hard by process solutions
- Potential future work
 - Exploration of high-speed networking technologies with DM
 - Enhancements to DM middleware for performance/availability/reliability
 - Further evaluation of future processing platforms (rad testing, etc.)

Poster includes details on DM performance benchmarking for multiple platforms and applications