
Language, Dialect, and Speaker Recognition Using Gaussian Mixture
Models on the Cell Processor.

Nicolas Malyska, Sanjeev Mohindra, Douglas Reynolds, and Jeremy Kepner.

MIT Lincoln Laboratory

244 Wood Street, Lexington, MA 02420, USA

{nmalyska,smohindra,dar,kepner}@ll.mit.edu

Introduction
1

Automatic recognition systems are commonly used in

speech processing to classify observed utterances by the

speaker’s identity, dialect, and language. These problems

often require high processing throughput, especially in

applications involving multiple concurrent incoming speech

streams, such as in datacenter-level processing.

Recent advances in processor technology allow multiple

processors to reside within the same chip, allowing high

performance per watt. Currently the Cell Broadband Engine

has the leading performance-per-watt specifications in its

class. Each Cell processor consists of a PowerPC

Processing Element (PPE) working together with eight

Synergistic Processing Elements (SPE). The SPEs have

256KB of memory (local store), which is used for storing

both program and data.

This paper addresses the implementation of language,

dialect, and speaker recognition on the Cell architecture.

Classically, the problem of performing speech-domain

recognition has been approached as embarrassingly parallel,

with each utterance being processed in parallel to the

others. As we will discuss, efficient processing on the Cell

requires a different approach, whereby computation and

data for each utterance are subdivided to be handled by

separate processors. We present a computational model for

automatic recognition on the Cell processor that takes

advantage of its architecture, while mitigating its

limitations. Using the proposed design, we predict a system

able to concurrently score over 220 real-time speech

streams on a single Cell.

Recognition for Speech Applications Using

Gaussian Mixture Models
Recognition systems in speech technology allow us to

identify the language, dialect, or speaker in a particular

audio recording based on a set of known previous

recordings. A recognition system consists of two primary

stages, front-end processing and pattern-recognition. The

goal of front-end processing is to transform incoming audio

into a set of parameters, called features that capture the

important characteristics of the signal. The pattern-

recognition stage then takes these features and uses them to

make a decision regarding the identity of the speaker, their

language, or their dialect. In this paper, we shall focus on

parallelizing the pattern-recognition stage of the process as

this is where much of the time is spent in current systems.

This work is sponsored by the United States Air Force under Air Force

Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and

recommendations are those of the authors and are not necessarily endorsed

by the United States Government.

Gaussian mixture models (GMMs) are a state-of-the-art

approach to pattern recognition that are popular in

language, dialect, and speaker recognition systems, and that

are also fundamental for speech recognition tasks. This

technique models the probability-density function

governing observed features and uses this distribution to

classify incoming speech. Gaussian-mixture models

represent the feature space as a set of Gaussian states, each

with three parameters, mean, covariance, and weight.

Multiple individual Gaussians combine to form the full

density function model for a particular class.

Given the set of observed feature vectors, X , for an

utterance, the recognition problem can be summarized as

finding the ratio of the probability that X was generated by

the target system with model
C

λ to the probability that X

was generated by the background model,
C

λ , which

represents the distribution of features expected over all

speakers. The logarithm of this ratio, the log-likelihood

ratio score, becomes the criteria for deciding whether a

given speaker, language, or dialect is in fact the target:

() log[(|)] log[(|)]
C C

X p X p Xλ λΛ = −

() threshold, accept

() threshold, reject.

X

X

Λ ≥

Λ <

The probability, (|)p X λ , of observing a set of feature

vectors given model λ is found using:

()11 1

2
1 1

(|) log exp () ()
K M

T

i i i iK

i

p X C x xλ µ µ−

=

= − − Σ −

∑ ∑ ,

where
i

Σ is the (diagonal) covariance matrix,
i

µ is the

mean, and
i

C is a constant derived from the weight and

covariance matrix of the i
th

 Gaussian state. M denotes the

number of states in a particular model and K is the number

of observed features in a particular utterance. The

calculation of (|)p X λ reduces to a dot product, with a

table lookup used to compute the function

1

() log exp()
M

i

f u u
=

= ∑ .

Parallel Implementation of the GMM
For programming the Cell architecture, it is important to

choose an algorithm that minimizes the amount of data

transfer between the PPE and the SPE. The background

model is about 630K, far exceeding the size of the 256KB

SPE local store. Thus, before GMM scoring begins, the

background model must first be split across the SPEs

(Step 1) and kept there throughout the scoring procedure.

Each feature vector is then broadcast to all SPEs (Step 2).

The SPEs score the feature vector against their portion of

the background model (Step 3), and the resulting scores are

aggregated on the PPE (Step 4). The data flow is shown in

Figure 1.

Figure 1: Parallel implementation of GMM. Numbers refer to

corresponding step numbers in the text.

Modern methods do not require scoring against all states of

each target model. Instead, the results of scoring a feature

vector against the background model are used to select only

a limited number (typically 5 out of 2048) of the target

states [1]. Whereas the full target models would not fit in

the SPE memory, several selected states can fit in the SPE

memory and are sent to the SPE and scored at the same

time (Step 5). The results of scoring each target on the SPEs

(Step 6) are aggregated on the PPE, and the log-likelihood

ratio scores are computed (Step 7).

Results
We have simulated the parallel-computing model in order

to evaluate its performance characteristics. The metric that

we use for performance is the number of concurrent real-

time speech streams supported, when operating at the

standard rate of 100 frames per second. In the model we

define computational efficiency as the ratio of FLOPS to

the maximum theoretical FLOPS for the Cell. The data

transfer efficiency is defined to be the ratio of the observed

data transfer rate to the peak theoretical bandwidth for the

Cell Element Interconnect Bus. Based on empirical

observations, a computational efficiency of 5 percent and a

data-transfer efficiency of 12 percent have been used for the

model [2]. We assume that communication and

computation operations are overlapped using double

buffering where possible and C extensions are used to take

advantage of the SIMD capabilities of the SPEs. The

default parameters for the system are 2048 38-dimensional

Gaussians per model for each of 10 target models. These

values are representative of the standard language-

recognition systems in use. With these parameters, we are

able to achieve a simulated throughput of 222 concurrent

real-time speech streams on a single 8-SPE Cell.

As depicted in Figure 2, three parameters of the model—

computational efficiency, data-transfer efficiency, and the

number of targets—are swept. As shown, each of these

factors has the ability to alter performance dramatically.

The sweep of computational efficiency shows that this

aspect dominates performance, yielding increased

performance with increased efficiency and only minor

saturation. Sweeping data-transfer efficiency shows that

while it is an important parameter, with a similar effect to

computational efficiency up to about 5 percent, its

importance levels off after this point. Even high data-

transfer efficiency cannot yield increases in performance

comparable to high computational efficiency.

Figure 2: Sweep of three parallel-scoring-model parameters.

Default system operating points are indicated with arrows.

The final sweep shows the effect of varying the number of

target models that we score against. As can be seen,

increasing the number of targets increases the

computational load, reducing the number of possible

concurrent streams. This is because each target model must

be transferred to the SPEs, incurring additional data-transfer

time, and each feature vector must be compared against

each target model, incurring additional operations.

Conclusions and Future Work
We have presented a model for parallel language, dialect,

and speaker recognition on the Cell processor. Our future

work includes implementing the algorithms in order to

validate our model and comparing our system against other

state-of-the art serial and parallel approaches to this

problem. The algorithm will become part of the PVTOL [3]

library.

References
[1] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker

Verification Using Adapted Gaussian Mixture Models,

Digital Signal Processing, vol. 10, pp. 19-41, 2004.

[2] J. Geraci and S. Raghunathan. High Performance Simulations

of Electrochemical Models on the Cell Broadband Engine,

HPEC Workshop, 2007, Lexington, MA.

[3] H. Kim, N. Bliss, R. Haney, J. Kepner, M. Marzilli,

S. Mohindra, S. Sacco, G. Schrader and E. Rutledge. PVTOL:

A High-Level Signal Processing Library for Multicore

Processors, HPEC Workshop, 2007, Lexington, MA.

