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Introduction
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Automatic recognition systems are commonly used in 

speech processing to classify observed utterances by the 

speaker’s identity, dialect, and language. These problems 

often require high processing throughput, especially in 

applications involving multiple concurrent incoming speech 

streams, such as in datacenter-level processing. 

Recent advances in processor technology allow multiple 

processors to reside within the same chip, allowing high 

performance per watt. Currently the Cell Broadband Engine 

has the leading performance-per-watt specifications in its 

class. Each Cell processor consists of a PowerPC 

Processing Element (PPE) working together with eight 

Synergistic Processing Elements (SPE). The SPEs have 

256KB of memory (local store), which is used for storing 

both program and data. 

This paper addresses the implementation of language, 

dialect, and speaker recognition on the Cell architecture. 

Classically, the problem of performing speech-domain 

recognition has been approached as embarrassingly parallel, 

with each utterance being processed in parallel to the 

others. As we will discuss, efficient processing on the Cell 

requires a different approach, whereby computation and 

data for each utterance are subdivided to be handled by 

separate processors. We present a computational model for 

automatic recognition on the Cell processor that takes 

advantage of its architecture, while mitigating its 

limitations. Using the proposed design, we predict a system 

able to concurrently score over 220 real-time speech 

streams on a single Cell. 

Recognition for Speech Applications Using 

Gaussian Mixture Models 
Recognition systems in speech technology allow us to 

identify the language, dialect, or speaker in a particular 

audio recording based on a set of known previous 

recordings. A recognition system consists of two primary 

stages, front-end processing and pattern-recognition. The 

goal of front-end processing is to transform incoming audio 

into a set of parameters, called features that capture the 

important characteristics of the signal. The pattern-

recognition stage then takes these features and uses them to 

make a decision regarding the identity of the speaker, their 

language, or their dialect. In this paper, we shall focus on 

parallelizing the pattern-recognition stage of the process as 

this is where much of the time is spent in current systems. 
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Gaussian mixture models (GMMs) are a state-of-the-art 

approach to pattern recognition that are popular in 

language, dialect, and speaker recognition systems, and that 

are also fundamental for speech recognition tasks. This 

technique models the probability-density function 

governing observed features and uses this distribution to 

classify incoming speech. Gaussian-mixture models 

represent the feature space as a set of Gaussian states, each 

with three parameters, mean, covariance, and weight. 

Multiple individual Gaussians combine to form the full 

density function model for a particular class. 

Given the set of observed feature vectors, X , for an 

utterance, the recognition problem can be summarized as 

finding the ratio of the probability that X  was generated by 

the target system with model 
C

λ  to the probability that X  

was generated by the background model, 
C

λ , which 

represents the distribution of features expected over all 

speakers. The logarithm of this ratio, the log-likelihood 

ratio score, becomes the criteria for deciding whether a 

given speaker, language, or dialect is in fact the target: 
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The probability, ( | )p X λ , of observing a set of feature 

vectors given model λ  is found using: 
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where 
i

Σ  is the (diagonal) covariance matrix, 
i

µ  is the 

mean, and 
i

C  is a constant derived from the weight and 

covariance matrix of the i
th

 Gaussian state. M  denotes the 

number of states in a particular model and K  is the number 

of observed features in a particular utterance. The 

calculation of ( | )p X λ  reduces to a dot product, with a 

table lookup used to compute the function 
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Parallel Implementation of the GMM 
For programming the Cell architecture, it is important to 

choose an algorithm that minimizes the amount of data 

transfer between the PPE and the SPE. The background 

model is about 630K, far exceeding the size of the 256KB 

SPE local store. Thus, before GMM scoring begins, the 

background model must first be split across the SPEs 

(Step 1) and kept there throughout the scoring procedure. 



Each feature vector is then broadcast to all SPEs (Step 2). 

The SPEs score the feature vector against their portion of 

the background model (Step 3), and the resulting scores are 

aggregated on the PPE (Step 4). The data flow is shown in 

Figure 1. 

 

Figure 1: Parallel implementation of GMM. Numbers refer to 

corresponding step numbers in the text. 

Modern methods do not require scoring against all states of 

each target model. Instead, the results of scoring a feature 

vector against the background model are used to select only 

a limited number (typically 5 out of 2048) of the target 

states [1]. Whereas the full target models would not fit in 

the SPE memory, several selected states can fit in the SPE 

memory and are sent to the SPE and scored at the same 

time (Step 5). The results of scoring each target on the SPEs 

(Step 6) are aggregated on the PPE, and the log-likelihood 

ratio scores are computed (Step 7). 

Results 
We have simulated the parallel-computing model in order 

to evaluate its performance characteristics. The metric that 

we use for performance is the number of concurrent real-

time speech streams supported, when operating at the 

standard rate of 100 frames per second. In the model we 

define computational efficiency as the ratio of FLOPS to 

the maximum theoretical FLOPS for the Cell. The data 

transfer efficiency is defined to be the ratio of the observed 

data transfer rate to the peak theoretical bandwidth for the 

Cell Element Interconnect Bus. Based on empirical 

observations, a computational efficiency of 5 percent and a 

data-transfer efficiency of 12 percent have been used for the 

model [2]. We assume that communication and 

computation operations are overlapped using double 

buffering where possible and C extensions are used to take 

advantage of the SIMD capabilities of the SPEs. The 

default parameters for the system are 2048 38-dimensional 

Gaussians per model for each of 10 target models. These 

values are representative of the standard language-

recognition systems in use. With these parameters, we are 

able to achieve a simulated throughput of 222 concurrent 

real-time speech streams on a single 8-SPE Cell. 

As depicted in Figure 2, three parameters of the model—

computational efficiency, data-transfer efficiency, and the 

number of targets—are swept. As shown, each of these 

factors has the ability to alter performance dramatically. 

The sweep of computational efficiency shows that this 

aspect dominates performance, yielding increased 

performance with increased efficiency and only minor 

saturation. Sweeping data-transfer efficiency shows that 

while it is an important parameter, with a similar effect to 

computational efficiency up to about 5 percent, its 

importance levels off after this point. Even high data-

transfer efficiency cannot yield increases in performance 

comparable to high computational efficiency. 

 

Figure 2: Sweep of three parallel-scoring-model parameters. 

Default system operating points are indicated with arrows. 

The final sweep shows the effect of varying the number of 

target models that we score against. As can be seen, 

increasing the number of targets increases the 

computational load, reducing the number of possible 

concurrent streams. This is because each target model must 

be transferred to the SPEs, incurring additional data-transfer 

time, and each feature vector must be compared against 

each target model, incurring additional operations. 

Conclusions and Future Work 
We have presented a model for parallel language, dialect, 

and speaker recognition on the Cell processor. Our future 

work includes implementing the algorithms in order to 

validate our model and comparing our system against other 

state-of-the art serial and parallel approaches to this 

problem. The algorithm will become part of the PVTOL [3] 

library. 
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