
GPU Performance Assessment with the HPEC Challenge

Andrew Kerr, Dan Campbell, Mark Richards
Georgia Institute of Technology, Georgia Tech Research Institute

{andrew.kerr, dan.campbell}@gtri.gatech.edu, mark.richards@ece.gatech.edu

Introduction
Commodity graphics processing units (GPUs) are highly
parallel programmable microprocessors. The current high
end GPUs offer a peak performance of 500 GFLOP/s in
single precision. Previous methods of performing general-
purpose computation on GPUs required algorithm imple-
mentations be cast as 3D graphics operations with pro-
hibitive limitations on programmable vertex and pixel
shader length, control flow, and arthmetic capabilities. In
2006, NVIDIA released the Compute Unified Device Archi-
tecture (CUDA) [1] development platform for the GeForce
8 series of GPUs. CUDA specifies extensions to the C pro-
gramming language for writing program “kernels” directly
targeting GPUs. This enhances the viability of GPUs as a
general-purpose computing solution by providing a straight-
forward programming model and language exposing the
parallel data paths of the GeForce 8. Achieving high perfor-
mance requires careful consideration of GPU architectures
and rigorous optimization efforts. Efficient implementations
are nontrivial, and certain classes of algorithms are better
suited to GPU architectures than others. Our implementa-
tion demonstrates the performance characteristics of GPUs
for various kernel-level benchmarks selected from the High
Performance Embedded Computing Challenge [2]. We will
discuss the suitability of each benchmark to GPU archi-
tectures and describe optimization techniques that result in
maximum speedup.

Benchmarks and Performance Metrics
The HPEC Challenge defines nine kernel-level benchmarks
consisting of fundamental matrix operations. We have im-
plemented time-domain FIR filter bank, frequency-domain
FIR filter bank, QR factorization, constant false-alarm rate
detection, pattern matching, graph optimization via genetic
algorithms, and corner turn.

The HPEC Challenge specifies several performance metrics.
Latency, L1(k,di), is the total time required to perform one
kernel k for data set size di. The HPEC Challenge specifies
that input data sets should reside initially in system mem-
ory, and that latency measurements should include time re-
quired to transfer data to coprocessor memory spaces such
as the GPU’s global memory. Because GPUs have enough
on-board memory to allow many real-world applications to
perform several operations consecutively before transmit-
ting final results to system memory, we also provide a strict
kernel latency measurement denoted L′1(k,di) that excludes
time spent transferring data between GPU and system mem-

ory. The HPEC Challenge defines asymptotic throughput
T (k,di) in terms of a predefined workload associated with
each kernel and the latency L1(k,di). Additional metrics de-
rived from latency and throughput include efficiency with
respect to peak theoretical performance, performance sta-
bility, and performance per unit power. Details are given in
[2]. We will present metrics for each kernel benchmark im-
plemented and contrast these results with performance of the
HPEC Challenge reference implementation [3]. Results of
our implementation of HPEC Challenge demonstrate GPUs
are a suitable class of architectures for applications requir-
ing high performance and energy efficiency.

Optimization for GPUs
The NVIDIA GeForce 8800 GTX possesses sixteen multi-
processors. Each multiprocessor is structured as a SIMD
processor with eight data paths. To achieve maximum per-
formance, all data paths must perform computation while
at the same time maximizing memory data transfer rates.
This is accomplished with careful parallelization with re-
gard to concurrency, interthread communication, and effi-
cient memory access patterns. Because GPUs lack a method
for multiprocessors to exchange data or synchronization
messages within kernels, multiple kernels must be invoked.
This forces a flush of “shared memory” and limits through-
put of algorithms that depend on fine-grain synchronization
among concurrent blocks. Though the GeForce 8800 lacks
a large cache, it interfaces global memory with a 384-bit
bus capable of bandwidth up to 86 GB/s. Reads and writes
are coalesced among adjacent threads accessing consecutive
locations. Latency is also high, however, requiring several
hundred cycles to satisfy a request in the absence of other
traffic. Many concurrent threads may effectively hide mem-
ory latency by performing computation while others wait
for memory transactions to complete. This may be accom-
plished by structuring algorithms to employ data pipelines
as in the time-domain FIR implementation. Skewed storage
of vectors in shared memory avoids bank conflicts between
adjacent threads. Performing serial operations in blocks pro-
motes coarse-grain synchronization as demonstrated in the
QR factorization benchmark.

Performance Results
The latencies and speedup of selected benchmarks imple-
mented appear in Table 1. Speedup is expressed in terms
of the strict kernel latency metric L′1(k,di) for the GPU im-
plementation. For the CPU reference implementation, the
data is already in the address space of the CPU. Benchmarks



were run on a 2.4 GHz Intel Core2 Q6600 with an NVIDIA
GeForce 8800 GTX. The OS is Windows XP Professional.

Table 1: Performance results in milliseconds

Benchmark Data set L1(k,di) L′1(k,di) Speedup
Corner Set 1 2.49 0.30 8.32
Turn Set 2 28.2 4.60 11.4
TD FIR Set 1 3.92 2.54 151

Set 2 0.76 0.09 22.2
FD FIR Set 1 9.02 3.25 19.7

Set 2 2.0 0.26 11.5
Pattern Set 1 2.00 0.24 12.7
Matching Set 2 3.99 1.65 23.1
CFAR Set 1 2.43 0.29 2.3

Set 2 56.6 3.5 166
Set 3 19.1 3.4 46.8
Set 4 10.5 2.7 25.6

Genetic Set 1 2.12 0.5 15.6
Algorithms Set 2 13.6 11.7 33.3

Set 3 2.65 1.0 21.9
Set 4 6.4 4.1 23.7

QR Set 1 23.5 20.3 4.6
Set 2 6.54 4.5 1.5
Set 3 3.91 1.8 5.6

Performance Analysis
Several benchmarks have straightforward parallelization
schemes that result in high speedup without significant op-
timization effort. The time-domain FIR filtering benchmark
assigns one block per filter bank and performs convolution
with an unrolled looping structure and data pipeline through
shared memory. CFAR is embarrassingly parallel and
specifies a large data cube. Each doppler bin may be
processed independently of the others, and overall runtime
is bounded by global memory bandwidth.

The graph optimization benchmark simulates the search
of a problem space using a genetic algorithm. Candidate
solutions are coded as “chromosomes” consisting of a tuple
of “genes” and evaluated based on a table look up. For each
iteration, selection, crossover, and mutation are performed.
While each of these steps requires the population be initially
held in global memory, each procedure is highly parallel
and independent. Each generation may be performed as
a batched sequence of kernel calls. The relatively small
number of distinct code words for all genes of a data set
permits the lookup table be held entirely in shared memory
during the evaluation step. Due to inherent coarse-grain
parallelism, genetic algorithms are favorable to GPUs and
exhibit high speedup.

The QR factorization benchmark specifes the Fast Givens
algorithm defined in [4] for factoring a matrix A such that
A = QR, where Q is orthogonal and R is upper triangular.
The benchmark was implemented for complex-valued
matrices of up to 512 rows. To achieve coarse-grain
synchronization, a set of Givens rotation matrices is com-
puted for consecutive rows along a set of adjacent “active”

columns. This is performed by a kernel of one block with
only as many threads as the number of full columns that can
fit into shared memory. Once all threads have computed
Givens rotations and applied them across the columns of
this block, the matrices are written to global memory and the
kernel terminated. A second kernel is launched with many
blocks and applies these rotations to all of the columns of
the matrix. Additionally, Q is transformed. This sequence is
repeated until all of the input matrix has been triangularized.

While Fast Givens is well-suited to CPU architectures, it is
not necessarily the best algorithm for performing QR fac-
torization on GPUs. Fast Givens reduces the number of
square roots performed by constructing a diagonal matrix
of squares that delays the normalization of the Givens ro-
tations. After R is triangularized, the inverse square root of
this diagonal matrix is computed and used to multiply Q and
R. On a CPU with a large cache, the diagonal matrix is likely
to remain in cache permitting fast accesses. Because square
root is a computationally intensive operation, this method
is preferable to the Givens method of QR factorization for
CPU implementations if accuracy requirements are relaxed.
GPUs, however, are capable of performing many square root
calculations in parallel with relatively low latency. Avoiding
updates to the diagonal matrix and computing square roots
for each Givens rotation is faster during the triangularization
step and avoids a large matrix multiply afterward. QR fac-
torization with Givens rotations is likely to be faster than the
Fast Givens algorithm on GPUs. Moreover, the Givens rota-
tion method is typically more accurate than Fast Givens im-
plemented for the same architecture and should be selected
for future GPU implementations if the implementer is free
to choose the underlying algorithm.

Conclusion
GPUs perform well when applications can be partitioned
into disjoint blocks of threads that do not require fine-grain
communication or synchronization. The wide SIMD nature
of each multiprocessor successfully achieves high perfor-
mance without hindering any class of applications. The fast
shared memory in each multiprocessor is of sufficient capac-
ity for the kernel benchmarks covered. Additional memory
in future architectures will improve scalability of certain im-
plementations. Lack of a high-speed interconnect between
multiprocessors does limit throughput for certain classes of
algorithms, but this latency may be effectively hidden with a
large number of threads and by batching kernel invocations.

References
[1] NVIDIA CUDA Programming Guide 1.1,

http://www.nvidia.com/object/cuda get.html

[2] HPEC Challenge,
http://www.ll.mit.edu/HPECchallenge

[3] HPEC Challenge Reference Implementation,
http://www.ll.mit.edu/HPECchallenge/software.html

[4] Golub and Van Loan. Matrix Computations. Johns
Hopkins University Press, 3rd edition, 1996.


