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Abstract 

We show how LabVIEW Real-Time can be used to 
execute a 3k I/O point control loop in less than 1 ms on a 
single off-the-shelf 8-core workstation.  At the heart of the 
control loop is an optimized 3k x 3k symmetric-matrix-
vector multiplication algorithm.  We report findings from 
ongoing work on a fast multiplication algorithm for 15k x 
9k by 15k matrix-vector multiplication using a cluster of 
workstations.  As a second study of applying LabVIEW to 
high performance real-time control we discuss a novel 
approach for solving general linear and non-linear elliptic 
partial differential equations (PDE).  The result is that a 
non-linear PDE is solved in less than 1ms on a 111x55 grid 
for a tokomak fusion control application.  For both studies 
we provide additional results obtained by implementing 
these new algorithms on GPUs. 
Extremely Large Telescope 

M1 (the primary mirror) is a segmented mirror 
consisting of 984 hexagonal mirrors (Figure 1a) each with a 
diameter in the 2 m range (for comparison: the Hubble 
Space Telescope’s main mirror has a diameter of 2.4 m).  
While in operation, adjacent mirrors (Figure 1b) might be 
slightly tilted against each other, and this deviation from the 
ideal situation can be sensed by edge sensors. The spatial 
dimensions of M1 complicate things as both sensor and 
actuator data have to travel over longer distances 
deterministically.  The goal is to maintain a perfectly 
aligned field of mirrors at all times with a loop-time of 1 
ms.  The model that emerges relies on a 3,000-by-3,000 
matrix-vector multiplication where the symmetric matrix is  

 
Figure 1a: ESO’s Extremely Large Telescope  

known in advance. ESO’s M4 mirror is computationally 
more demanding.   It is currently specified as a 2 m 
deformable mirror driven by 8,000 small actuators.  The 
actuator data is generated by analyzing incoming 
wavefronts that deviate from the ideal because of 
atmospheric disturbances. Dense linear algebra of matrices 
and vectors of sizes 10k and beyond is required where the 

time-constraints are again in the sub 1 ms range. It is 
estimated that such real-time reconstruction algorithms can 
be handled efficiently using 10-20 blades with 8 cores each.  
We are currently benchmarking such algorithms. 

 
Figure 1b: Sensors between adjacent mirror segments 

Algorithm 
We identified that the required performance for 

M1 can be achieved only if the symmetric matrix can be 
kept in on-CPU cache at all times and the full power of 
SSE2 instruction is utilized.  To do so, we repack the matrix 
data off-line to half of its original size and organize its 
contents in 4x4 blocks.  This particular data organization 
utilizes all 8 SSE registers during computation.  The packed 
matrix data is then distributed across the processors/cores in 
such a way that it stays inside on-CPU cache for the 
duration of the application’s execution and that each CPU 
can solve a symmetric part of the problem.  During the 
execution, one of the CPUs obtains new vector data, 
distributes it to the rest of the CPUs, and collecting results 
from the other CPUs back into a single output vector.  To 
handle problem sizes that do not fit inside the cache, the 
algorithm must perform calculation in “both directions.”  
This means that the algorithm is able to toggle the direction 
in which it accesses data.  For example, let’s assume that 
10% of the data does not fit into the cache and that data is 
de-cached using LRU (least recently used) approach.  If 
now application starts accessing data from the beginning, it 
will have to reload the first 10% of data from main memory 
causing the next 10% of the data that is already in memory 
to be decached.  The process of decashing data that will be 
used next continues causing the algorithm to always run 
out-of-cache. On the other hand, if the algorithm is able to 
toggle the direction of calculation, all but the last 10% of 
data will already be in the cache so, only 10% of data will 
have to be accessed out of main memory.  We observed 
speedups of up to 50% when employing the direction 
toggling approach. 
Benchmark 

All reported results were obtained using Dell 7400 
workstation with two quad-core Intel Xeon processors 
running @ 2.6 GHz/12 MB cache per processor, 4 GB of 
RAM, and LabVIEW Real Time 8.5.1. For problem sizes 
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that fit in on-CPU cache the execution time should be 
proportional to the CPU clock frequency.  For example, a 
3.2 GHz version of the processors should reduce execution 
times in Table 1 by 20-25%.  Unfortunately, the faster 
execution does not enable problem size increase because of 
the 24 MB on-CPU cache limit.  As the new 30MB on-CPU 
cache quad-core processors are released, the problem size 
can be increased by 20-25% and still meet 1 ms timing 
constraint. 
Vector/Matrix 
Size 

Num 
CPUs 

Time (µs) 
(average/best/worst) 

3k x 3k 4 600/500/700 
3k x 3k 8 500/450/650 

3390 x 3390 4 worst case 950 
Table 1: Benchmark results for symmetric matrix-vector 

multiplication 

Nonlinear PDE 
The primary motivation behind the new approach 

to solving (non)-linear PDEs has been nuclear fusion with 
its challenge of plasma control in tokamak confinements. 
The magnetic flux of the plasma for a fixed cross-section 
(R-radial component, Z-vertical component) of the toroidal 
tokamak container is described by the non-linear Grad-
Shafranov partial differential equation. 

Smaller coils sense the field resulting from the 
interaction between actuators and plasma.  The 
measurements are used to reconstruct the magnetic flux by 
fitting PDE solutions of against those measurements. These 
solutions are used to drive the actuator coils to maintain the 
plasma shape. The cycle time must be on the order of 1 ms 
or faster. Our goal has been to replace the current PCA-
based approximation for the Grad-Shafranov solver with a 
more accurate solver. The nonlinearities can be 
approximated by low-order polynomials in R and in the 
unknown functionψ . 
Algorithm 

We start with a general elliptic linear PDE 
specified by Dirichlet boundary conditions.  Using finite 
difference approach, the equation is turned into a set of 
linear equations.  For Neumann boundary conditions, 
Dirichlet/Neumann hybrid cases, or cases where the 
boundary conditions are given both at the edge and at the 
internal points, a slightly different set of equations emerges 
but the same approach applies.   

Given the inverse matrix, the real-time part of the 
calculation consists of multiplying the inverse matrix with 
the boundary condition vector BC.  A brute force approach 
for an NxN grid takes on the order of N4 MAC (multiply 
and accumulate) operations to obtain the solution.  For a 
128x128 grid, the computation requires 268M operations.  
The calculation is limited by the memory-to-CPU 
bandwidth because the data set cannot fit in on-CPU cache.  
Assuming 10 GB/s memory-to-CPU throughput, each 
iteration takes more than 27 ms to calculate, well beyond 
the desired goal of 1 ms. 

The first reduction in the number FLOPs required 
utilizes the system’s dependency on roughly 4N boundary 
conditions.  By manipulating columns the matrix model is 
reduced and the cost of the evaluation of all points on the 
NxN grid drops to 4N3, or 8.4M MAC steps for 128x128 

grid.  This corresponds to 17 GFLOPs for the calculation to 
meet 1 ms time limit.  This is achievable if the system has 
at least 36 MB of cache (each point is 4 bytes).  If not, the 
speed is again gated by the memory-to-CPU bandwidth 
producing calculations that take approximately 4ms, 
assuming a 10 GB/s bandwidth.  

We use a novel approach to further reduce the 
number of required real-time calculations.  A finite 
difference version of the PDE implies that a change in 
boundary conditions will propagate through the grid like 
waves until the grid finally settles to the solution.  Only one 
path between two grid points is needed for changes in their 
values to affect each other.  Figure 2 shows how can a grid 
be divided into two smaller independent sections by 
calculating solution on a subsection of the grid.  Since the 
values of the calculated grid points do not change (they 
represent the partial solution), they must represent boundary 
conditions for the smaller two sub-grids.  Smaller grids 
result in fewer calculations.  The subdivision process is 
repeated until a threshold size grid is reached.  Coefficients 
necessary to calculate solution on new boundary grid points 
can be calculated off-line. 

 
Figure 2: Dividing the solution grid to reduce overall number 

of calculations 

The total number of MAC steps required for 
calculating solutions on a 127x127 grid size partitioned to 
the minimum sub-grid size of 7x7 as shown in Figure 2, is 
792573, or 1.6 GFLOPs for execution computing in 1 ms.  
In general, the calculation cost scales for a 2D NxN grid as 
O(N2logN). To handle larger grids, we developed a new 
way of calculating rows of inverse matrices required for 
calculation of grid points used for partitioning. 

The described process can be directly applied to 
non-linear PDEs with few changes.  The non-linear PDE is 
solved in an iterative fashion in which result for step n is 
used as a starting point for step n+1.  The major difference 
with respect to the linear PDE algorithm is that the solution 
for each point now, in addition on the boundary conditions, 
also depends on the current values of the grid points.  
Consequently, the number of calculations required for 
solution on a grid of a given size increases. 
GPUs 

One can run either into limitations in CPU 
computational power or into bus bandwidth limitations if 
the problem data does not fit into the on-CPU cache.  The 
memory bandwidth is one area where GPUs currently have 
lead over general purpose CPUs, so much so, that on GPUs 
one may treat all memory as cache.  This is the main reason 
why we are investigating how to map algorithms described 
in this paper onto GPUs. 
 


