
LabVIEW Real Time for high performance control applications
Aljosa Vrancic, Lothar Wenzel

National Instruments
aljosa.vrancic@ni.com, lothar.wenzel@ni.com

Abstract

We show how LabVIEW Real-Time can be used to
execute a 3k I/O point control loop in less than 1 ms on a
single off-the-shelf 8-core workstation. At the heart of the
control loop is an optimized 3k x 3k symmetric-matrix-
vector multiplication algorithm. We report findings from
ongoing work on a fast multiplication algorithm for 15k x
9k by 15k matrix-vector multiplication using a cluster of
workstations. As a second study of applying LabVIEW to
high performance real-time control we discuss a novel
approach for solving general linear and non-linear elliptic
partial differential equations (PDE). The result is that a
non-linear PDE is solved in less than 1ms on a 111x55 grid
for a tokomak fusion control application. For both studies
we provide additional results obtained by implementing
these new algorithms on GPUs.
Extremely Large Telescope

M1 (the primary mirror) is a segmented mirror
consisting of 984 hexagonal mirrors (Figure 1a) each with a
diameter in the 2 m range (for comparison: the Hubble
Space Telescope’s main mirror has a diameter of 2.4 m).
While in operation, adjacent mirrors (Figure 1b) might be
slightly tilted against each other, and this deviation from the
ideal situation can be sensed by edge sensors. The spatial
dimensions of M1 complicate things as both sensor and
actuator data have to travel over longer distances
deterministically. The goal is to maintain a perfectly
aligned field of mirrors at all times with a loop-time of 1
ms. The model that emerges relies on a 3,000-by-3,000
matrix-vector multiplication where the symmetric matrix is

Figure 1a: ESO’s Extremely Large Telescope

known in advance. ESO’s M4 mirror is computationally
more demanding. It is currently specified as a 2 m
deformable mirror driven by 8,000 small actuators. The
actuator data is generated by analyzing incoming
wavefronts that deviate from the ideal because of
atmospheric disturbances. Dense linear algebra of matrices
and vectors of sizes 10k and beyond is required where the

time-constraints are again in the sub 1 ms range. It is
estimated that such real-time reconstruction algorithms can
be handled efficiently using 10-20 blades with 8 cores each.
We are currently benchmarking such algorithms.

Figure 1b: Sensors between adjacent mirror segments

Algorithm
We identified that the required performance for

M1 can be achieved only if the symmetric matrix can be
kept in on-CPU cache at all times and the full power of
SSE2 instruction is utilized. To do so, we repack the matrix
data off-line to half of its original size and organize its
contents in 4x4 blocks. This particular data organization
utilizes all 8 SSE registers during computation. The packed
matrix data is then distributed across the processors/cores in
such a way that it stays inside on-CPU cache for the
duration of the application’s execution and that each CPU
can solve a symmetric part of the problem. During the
execution, one of the CPUs obtains new vector data,
distributes it to the rest of the CPUs, and collecting results
from the other CPUs back into a single output vector. To
handle problem sizes that do not fit inside the cache, the
algorithm must perform calculation in “both directions.”
This means that the algorithm is able to toggle the direction
in which it accesses data. For example, let’s assume that
10% of the data does not fit into the cache and that data is
de-cached using LRU (least recently used) approach. If
now application starts accessing data from the beginning, it
will have to reload the first 10% of data from main memory
causing the next 10% of the data that is already in memory
to be decached. The process of decashing data that will be
used next continues causing the algorithm to always run
out-of-cache. On the other hand, if the algorithm is able to
toggle the direction of calculation, all but the last 10% of
data will already be in the cache so, only 10% of data will
have to be accessed out of main memory. We observed
speedups of up to 50% when employing the direction
toggling approach.
Benchmark

All reported results were obtained using Dell 7400
workstation with two quad-core Intel Xeon processors
running @ 2.6 GHz/12 MB cache per processor, 4 GB of
RAM, and LabVIEW Real Time 8.5.1. For problem sizes

mailto:aljosa.vrancic@ni.com

that fit in on-CPU cache the execution time should be
proportional to the CPU clock frequency. For example, a
3.2 GHz version of the processors should reduce execution
times in Table 1 by 20-25%. Unfortunately, the faster
execution does not enable problem size increase because of
the 24 MB on-CPU cache limit. As the new 30MB on-CPU
cache quad-core processors are released, the problem size
can be increased by 20-25% and still meet 1 ms timing
constraint.
Vector/Matrix
Size

Num
CPUs

Time (µs)
(average/best/worst)

3k x 3k 4 600/500/700
3k x 3k 8 500/450/650

3390 x 3390 4 worst case 950
Table 1: Benchmark results for symmetric matrix-vector

multiplication

Nonlinear PDE
The primary motivation behind the new approach

to solving (non)-linear PDEs has been nuclear fusion with
its challenge of plasma control in tokamak confinements.
The magnetic flux of the plasma for a fixed cross-section
(R-radial component, Z-vertical component) of the toroidal
tokamak container is described by the non-linear Grad-
Shafranov partial differential equation.

Smaller coils sense the field resulting from the
interaction between actuators and plasma. The
measurements are used to reconstruct the magnetic flux by
fitting PDE solutions of against those measurements. These
solutions are used to drive the actuator coils to maintain the
plasma shape. The cycle time must be on the order of 1 ms
or faster. Our goal has been to replace the current PCA-
based approximation for the Grad-Shafranov solver with a
more accurate solver. The nonlinearities can be
approximated by low-order polynomials in R and in the
unknown functionψ .
Algorithm

We start with a general elliptic linear PDE
specified by Dirichlet boundary conditions. Using finite
difference approach, the equation is turned into a set of
linear equations. For Neumann boundary conditions,
Dirichlet/Neumann hybrid cases, or cases where the
boundary conditions are given both at the edge and at the
internal points, a slightly different set of equations emerges
but the same approach applies.

Given the inverse matrix, the real-time part of the
calculation consists of multiplying the inverse matrix with
the boundary condition vector BC. A brute force approach
for an NxN grid takes on the order of N4 MAC (multiply
and accumulate) operations to obtain the solution. For a
128x128 grid, the computation requires 268M operations.
The calculation is limited by the memory-to-CPU
bandwidth because the data set cannot fit in on-CPU cache.
Assuming 10 GB/s memory-to-CPU throughput, each
iteration takes more than 27 ms to calculate, well beyond
the desired goal of 1 ms.

The first reduction in the number FLOPs required
utilizes the system’s dependency on roughly 4N boundary
conditions. By manipulating columns the matrix model is
reduced and the cost of the evaluation of all points on the
NxN grid drops to 4N3, or 8.4M MAC steps for 128x128

grid. This corresponds to 17 GFLOPs for the calculation to
meet 1 ms time limit. This is achievable if the system has
at least 36 MB of cache (each point is 4 bytes). If not, the
speed is again gated by the memory-to-CPU bandwidth
producing calculations that take approximately 4ms,
assuming a 10 GB/s bandwidth.

We use a novel approach to further reduce the
number of required real-time calculations. A finite
difference version of the PDE implies that a change in
boundary conditions will propagate through the grid like
waves until the grid finally settles to the solution. Only one
path between two grid points is needed for changes in their
values to affect each other. Figure 2 shows how can a grid
be divided into two smaller independent sections by
calculating solution on a subsection of the grid. Since the
values of the calculated grid points do not change (they
represent the partial solution), they must represent boundary
conditions for the smaller two sub-grids. Smaller grids
result in fewer calculations. The subdivision process is
repeated until a threshold size grid is reached. Coefficients
necessary to calculate solution on new boundary grid points
can be calculated off-line.

Figure 2: Dividing the solution grid to reduce overall number

of calculations

The total number of MAC steps required for
calculating solutions on a 127x127 grid size partitioned to
the minimum sub-grid size of 7x7 as shown in Figure 2, is
792573, or 1.6 GFLOPs for execution computing in 1 ms.
In general, the calculation cost scales for a 2D NxN grid as
O(N2logN). To handle larger grids, we developed a new
way of calculating rows of inverse matrices required for
calculation of grid points used for partitioning.

The described process can be directly applied to
non-linear PDEs with few changes. The non-linear PDE is
solved in an iterative fashion in which result for step n is
used as a starting point for step n+1. The major difference
with respect to the linear PDE algorithm is that the solution
for each point now, in addition on the boundary conditions,
also depends on the current values of the grid points.
Consequently, the number of calculations required for
solution on a grid of a given size increases.
GPUs

One can run either into limitations in CPU
computational power or into bus bandwidth limitations if
the problem data does not fit into the on-CPU cache. The
memory bandwidth is one area where GPUs currently have
lead over general purpose CPUs, so much so, that on GPUs
one may treat all memory as cache. This is the main reason
why we are investigating how to map algorithms described
in this paper onto GPUs.

