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Introduction 
High-performance programming for multicore architectures 
introduces complex challenges in parallelizing algorithms 
and managing data movement between cores.  Libraries 
such as Sourcery VSIPL++ [1] are useful in cases where the 
program can be expressed using standard array operations 
such as FFTs and linear algebra, as the parallelism can be 
encapsulated within the library.  However, challenges 
remain when the programs cannot be written in terms of 
standard operations and the parallelism must be exposed to 
the programmer. 

Streaming has emerged as a powerful paradigm for 
addressing this situation.  Breaking large computations into 
smaller blocks that can be processed nearly independently 
reduces problems to sizes that fit into a single core’s 
memory, and provides a framework in which computation 
and communication can be effectively overlapped. 

Simple streaming problems are straightforward to analyze 
and describe.  However, in real applications, streaming 
must often deal with complex data dependencies such as 
those that occur with fused streams or non-linear access 
patterns.  In this paper, we present a framework for 
describing and optimizing stream computations in terms of 
array blocks, which we will be incorporating into Sourcery 
VSIPL++.  Using the open-standard VSIPL++ API [2] 
allows streaming problems to be described portably at a 
high level, and the Sourcery VSIPL++ implementation 
dispatch framework is able to execute the resulting program 
efficiently to achieve high performance. 

Generalizing Multicore Programming 
Many parallel operations on arrays can be expressed in a 
block form: the arrays are divided into blocks, and then 
“kernel” operations are applied to these blocks.  These 
operations are unordered aside from dependency chains, 
which are typically short compared to the number of 
operations to be performed, but may have arbitrary 
complexity.  Much of the difficulty in implementing these 
operations on multicore architectures is determining on 
which core and in what order each of these operations 
should be run, and managing the transfers of the data blocks 
to and from the cores. 

These are general challenges.  Although the shape of the 
dependency tree and the number and capabilities of the 
available cores vary, the optimization problem is amenable 
to general architecture- and problem-independent solution 
algorithms.1  Similarly, although the code for managing the 
data transfers differs from architecture to architecture, it is a 
problem-independent process and amenable to a general 
solution for each architecture. 

                                                 
1 This is much like the problem of ordering instructions in a multiple-
architecture optimizing compiler such as GCC, and can be addressed by 
similar mechanisms. 

The framework we are currently developing supplies a 
general mechanism for ordering kernel-operation sets into 
lists of operations to be performed by each core, and 
architecture-specific mechanisms for dispatching data 
blocks to the cores and executing kernel functions on them.  
Thus, the only work required to implement a particular 
array operation is to implement the kernel functions for the 
relevant cores and specify the unordered operation set to be 
performed.  

Benefits of Using Sourcery VSIPL++ 
Because this framework is being developed as an extension 
to Sourcery VSIPL++, it can take advantage of the existing 
VSIPL++ high-level API and Sourcery VSIPL++’s high-
performance implementation techniques. 

In VSIPL++, multidimensional array data is stored in 
vector, matrix, and tensor objects that present a consistent 
representation to the programmer, independent of how the 
data is stored in memory.  Thus, an implementation can 
alter the data storage – for instance, by distributing an array 
across the local memory of several cores, or by reordering 
the data into a “blocked” format that allows for faster 
transfers – without affecting the interface by which that 
data is accessed in top-level programs. 

Sourcery VSIPL++ includes a dispatch mechanism by 
which an operation on array data can be dispatched to 
multiple implementations at compile time or at runtime 
depending on various parameters of the input data.  For 
example, an operation could be dispatched to a parallel 
implementation for large problem sizes, but to a serial 
implementation for small problem sizes where the startup 
costs would swamp the benefits from parallelization. 

Finally, most parallel operations are performed in a context 
of a larger program, and using the VSIPL++ API allows 
data to be easily transferred between user-written parallel 
operations and Sourcery VSIPL++ library functions. 

Framework Architecture 
There are three points at which programmers interact with 
this framework.  Parallel operations are defined by 
specifying a set of “kernel” functions to be applied to array 
blocks, and a description of the set of array blocks to which 
these kernels are applied.  Once defined, the parallel 
operation takes the form of a function that can then be 
applied to VSIPL++ vector, matrix, or tensor objects. 

When a programmer uses this function call, the dispatch 
mechanism invokes the first layer of the framework: the 
Operation Set Generator.  This uses the dimensions of the 
input arrays and the description of the set of blocks to 
which the kernels are to be applied, and produces a set of 
kernel operations and an associated dependency tree. 

This set of kernel operations is then passed to the 
Scheduler.  The Scheduler determines the order in which 



the kernel operations are to be executed on each of the 
available cores and translates them into a sequence of 
instructions.  These instructions consist of data transfer 
operations and calls to the kernel functions, and are 
represented in a compact architecture-independent bytecode 
format that can be passed to the individual cores. 

The Dispatch Engine then transfers these bytecoded 
instruction sequences to a lightweight execution framework 
on each core, which executes them. 

Preliminary Results 
At the time of this writing, we have implemented a proof-
of-concept demonstration of this framework for a simple 
elementwise matrix addition and obtained performance data 
on three different multicore architectures.  It should be 
noted that these are preliminary results; the framework has 
not yet been optimized for performance at all. 

 
Figure 1: Two Intel Xeon processors with 4 x86-64 cores per 

processor, based on pthreads. 

Figure 1 shows the parallel speedup results on a 2-processor 
machine with 4-core Xeon processors, using an 
implementation based on the POSIX pthreads library.  
When all eight cores are in use, a speedup factor of 6.13 is 
obtained compared to the performance on a single core, for 
a parallel efficiency of 76%. 

 
Figure 2: Two IBM Cell processors using 1 dual-threaded 

Power core per processor, based on pthreads. 

Figure 2 shows the equivalent results for the Power-
architecture PPU cores on the two Cell processors on an 
IBM QS21 Cell Blade, again with a pthreads-based 
implementation.  Each Cell processor has a single PPU 
core, with two hardware threads per core which share the 
core’s execution units.  Thus, there is a near-linear speedup 
(a factor of 1.96) when going from one thread to two 

threads, and more modest improvements for three or four 
threads; the speedup with four threads is a factor of 2.76. 

 
Figure 3: Two IBM Cell processors using 8 SPU cores per 

processor, based on ALF. 

Figure 3 shows results for the SPU cores (8 per processor) 
on the same two-processor IBM Cell Blade, using an 
implementation based on IBM’s ALF library.  With all 
sixteen SPUs in use, a speedup factor of 11.7 was obtained 
compared to the performance on a single SPU, for a parallel 
efficiency of 73%. 

Conclusion 
A large class of array computations can be represented with 
block operations.  We are producing an extension to 
Sourcery VSIPL++ which enables programmers to 
implement these computations on multicore platforms by 
writing kernel functions for the block operations and a 
descriptor for the set of blocks operations to perform, with 
the library handling scheduling and execution of these 
operations and the associated data transfers on the various 
processor cores. 

The preliminary performance data are encouraging, and 
indicate that this framework can be expected to produce 
performance comparable to that obtained by hand-coding, 
while simplifying the programming process and enhancing 
portability to new architectures. 

We would also expect that, for operations with more 
complex data dependencies, an automated scheduling 
algorithm could outperform the average hand-coded 
program, just as optimizing compilers can outperform all 
but the best handwritten assembly code. 

References 
[1] CodeSourcery, Inc. Sourcery VSIPL++.  [online] Available: 

http://www.codesourcery.com/vsiplplusplus. 

[2] CodeSourcery, Inc. VSIPL++ Parallel Specification 1.0.  
Georgia Tech Res. Corp. 2005 [online] Available: 
http://www.hpec-si.org.  


