
A General Framework for Multicore Programming with VSIPL++
Brooks Moses, Jules Bergmann, Stefan Seefeld, Don McCoy, Mike LeBlanc

CodeSourcery, Inc.
{brooks, jules, stefan, don, mike}@codesourcery.com

Introduction
High-performance programming for multicore architectures
introduces complex challenges in parallelizing algorithms
and managing data movement between cores. Libraries
such as Sourcery VSIPL++ [1] are useful in cases where the
program can be expressed using standard array operations
such as FFTs and linear algebra, as the parallelism can be
encapsulated within the library. However, challenges
remain when the programs cannot be written in terms of
standard operations and the parallelism must be exposed to
the programmer.

Streaming has emerged as a powerful paradigm for
addressing this situation. Breaking large computations into
smaller blocks that can be processed nearly independently
reduces problems to sizes that fit into a single core’s
memory, and provides a framework in which computation
and communication can be effectively overlapped.

Simple streaming problems are straightforward to analyze
and describe. However, in real applications, streaming
must often deal with complex data dependencies such as
those that occur with fused streams or non-linear access
patterns. In this paper, we present a framework for
describing and optimizing stream computations in terms of
array blocks, which we will be incorporating into Sourcery
VSIPL++. Using the open-standard VSIPL++ API [2]
allows streaming problems to be described portably at a
high level, and the Sourcery VSIPL++ implementation
dispatch framework is able to execute the resulting program
efficiently to achieve high performance.

Generalizing Multicore Programming
Many parallel operations on arrays can be expressed in a
block form: the arrays are divided into blocks, and then
“kernel” operations are applied to these blocks. These
operations are unordered aside from dependency chains,
which are typically short compared to the number of
operations to be performed, but may have arbitrary
complexity. Much of the difficulty in implementing these
operations on multicore architectures is determining on
which core and in what order each of these operations
should be run, and managing the transfers of the data blocks
to and from the cores.

These are general challenges. Although the shape of the
dependency tree and the number and capabilities of the
available cores vary, the optimization problem is amenable
to general architecture- and problem-independent solution
algorithms.1 Similarly, although the code for managing the
data transfers differs from architecture to architecture, it is a
problem-independent process and amenable to a general
solution for each architecture.

1 This is much like the problem of ordering instructions in a multiple-
architecture optimizing compiler such as GCC, and can be addressed by
similar mechanisms.

The framework we are currently developing supplies a
general mechanism for ordering kernel-operation sets into
lists of operations to be performed by each core, and
architecture-specific mechanisms for dispatching data
blocks to the cores and executing kernel functions on them.
Thus, the only work required to implement a particular
array operation is to implement the kernel functions for the
relevant cores and specify the unordered operation set to be
performed.

Benefits of Using Sourcery VSIPL++
Because this framework is being developed as an extension
to Sourcery VSIPL++, it can take advantage of the existing
VSIPL++ high-level API and Sourcery VSIPL++’s high-
performance implementation techniques.

In VSIPL++, multidimensional array data is stored in
vector, matrix, and tensor objects that present a consistent
representation to the programmer, independent of how the
data is stored in memory. Thus, an implementation can
alter the data storage – for instance, by distributing an array
across the local memory of several cores, or by reordering
the data into a “blocked” format that allows for faster
transfers – without affecting the interface by which that
data is accessed in top-level programs.

Sourcery VSIPL++ includes a dispatch mechanism by
which an operation on array data can be dispatched to
multiple implementations at compile time or at runtime
depending on various parameters of the input data. For
example, an operation could be dispatched to a parallel
implementation for large problem sizes, but to a serial
implementation for small problem sizes where the startup
costs would swamp the benefits from parallelization.

Finally, most parallel operations are performed in a context
of a larger program, and using the VSIPL++ API allows
data to be easily transferred between user-written parallel
operations and Sourcery VSIPL++ library functions.

Framework Architecture
There are three points at which programmers interact with
this framework. Parallel operations are defined by
specifying a set of “kernel” functions to be applied to array
blocks, and a description of the set of array blocks to which
these kernels are applied. Once defined, the parallel
operation takes the form of a function that can then be
applied to VSIPL++ vector, matrix, or tensor objects.

When a programmer uses this function call, the dispatch
mechanism invokes the first layer of the framework: the
Operation Set Generator. This uses the dimensions of the
input arrays and the description of the set of blocks to
which the kernels are to be applied, and produces a set of
kernel operations and an associated dependency tree.

This set of kernel operations is then passed to the
Scheduler. The Scheduler determines the order in which

the kernel operations are to be executed on each of the
available cores and translates them into a sequence of
instructions. These instructions consist of data transfer
operations and calls to the kernel functions, and are
represented in a compact architecture-independent bytecode
format that can be passed to the individual cores.

The Dispatch Engine then transfers these bytecoded
instruction sequences to a lightweight execution framework
on each core, which executes them.

Preliminary Results
At the time of this writing, we have implemented a proof-
of-concept demonstration of this framework for a simple
elementwise matrix addition and obtained performance data
on three different multicore architectures. It should be
noted that these are preliminary results; the framework has
not yet been optimized for performance at all.

Figure 1: Two Intel Xeon processors with 4 x86-64 cores per

processor, based on pthreads.

Figure 1 shows the parallel speedup results on a 2-processor
machine with 4-core Xeon processors, using an
implementation based on the POSIX pthreads library.
When all eight cores are in use, a speedup factor of 6.13 is
obtained compared to the performance on a single core, for
a parallel efficiency of 76%.

Figure 2: Two IBM Cell processors using 1 dual-threaded

Power core per processor, based on pthreads.

Figure 2 shows the equivalent results for the Power-
architecture PPU cores on the two Cell processors on an
IBM QS21 Cell Blade, again with a pthreads-based
implementation. Each Cell processor has a single PPU
core, with two hardware threads per core which share the
core’s execution units. Thus, there is a near-linear speedup
(a factor of 1.96) when going from one thread to two

threads, and more modest improvements for three or four
threads; the speedup with four threads is a factor of 2.76.

Figure 3: Two IBM Cell processors using 8 SPU cores per

processor, based on ALF.

Figure 3 shows results for the SPU cores (8 per processor)
on the same two-processor IBM Cell Blade, using an
implementation based on IBM’s ALF library. With all
sixteen SPUs in use, a speedup factor of 11.7 was obtained
compared to the performance on a single SPU, for a parallel
efficiency of 73%.

Conclusion
A large class of array computations can be represented with
block operations. We are producing an extension to
Sourcery VSIPL++ which enables programmers to
implement these computations on multicore platforms by
writing kernel functions for the block operations and a
descriptor for the set of blocks operations to perform, with
the library handling scheduling and execution of these
operations and the associated data transfers on the various
processor cores.

The preliminary performance data are encouraging, and
indicate that this framework can be expected to produce
performance comparable to that obtained by hand-coding,
while simplifying the programming process and enhancing
portability to new architectures.

We would also expect that, for operations with more
complex data dependencies, an automated scheduling
algorithm could outperform the average hand-coded
program, just as optimizing compilers can outperform all
but the best handwritten assembly code.

References
[1] CodeSourcery, Inc. Sourcery VSIPL++. [online] Available:

http://www.codesourcery.com/vsiplplusplus.

[2] CodeSourcery, Inc. VSIPL++ Parallel Specification 1.0.
Georgia Tech Res. Corp. 2005 [online] Available:
http://www.hpec-si.org.

