
Hard Real-time Scheduling Framework on CellBE
Bach D. Bui, Deepti K. Chivukula , Marco Caccamo, Lui Sha

Department of Computer Science
University of Illinois at Urbana Champaign

{bachbui2, dchivuk2, mcaccamo, lrs}@uiuc.edu

Introduction
In this research, we propose a real-time scheduling
framework on the CellBE microprocessor [5], in order to
handle the problem of unpredictable task execution time in
hard real-time systems. A hard real-time system has strict
requirements on timing behavior of tasks: (1) task worst
case execution times (WCET) must be reliably estimated
and (2) task deadlines must be guaranteed. Unfortunately,
the modern computer architecture has been designed in
such a way that the estimation of a tight bound WCET is
very difficult. The problem lies in the uncontrollability of
both the Front Side Bus (FSB), which is shared between
CPU and DMA-enabled peripherals, and the cache. In a
cache-based multitasking microprocessor system, a task
execution time can be unexpectedly extended by the
execution of other tasks or DMA-enabled peripherals [3, 4].
In our experiments [3], we observed that the extension in
the execution time to be as high as 44%. This problem is
potentially more severe in multiprocessor systems as they
have more entities simultaneously competing for bus
access.

Recently, there have been several advanced multiprocessor
systems being developed, possessing real-time-amicable
features. Among many, the Cell Broadband Engine
Architecture (CellBE) [5] is most distinguished for its
remarkable high performance and low cost. The CellBE is a
heterogeneous chip multiprocessor. It consists of an IBM
64-bit Power Architecture core called the Power Processing
Element (PPE), augmented with eight co-processors called
Synergistic Processor Elements (SPE), which contain
256KB of Local Storage (LS). All processing units and
peripherals communicate with main memory and other
units through the Element Interconnect Bus, which acts as
the FSB (Fig. 1 [5]). The EIB consists of four data rings,
two of which run clockwise and the other two counter-
clockwise. Each ring can allow up to three non overlapping
concurrent data transfers, which permits the bus system to
have a maximum of twelve concurrent transactions. More
importantly, the EIB access is software controllable.

The CellBE offers two innovative features to avoid the
unpredictable task execution time problem: (1) fast
controllable on-chip local memory instead of unpredictable
cache and (2) software-controllable FSB. However, the
architecture introduces a new challenge of scheduling tasks
together with their bus accesses. The goal of our research is
to solve this challenge. We propose a scheduling
framework that takes advantage of the multilevel
parallelism of CellBE i.e. multi-processor and bus-level
parallelism. To the best of our knowledge, there have been
no real-time schedulers that have dealt with this scheduling
problem.

Fig 1: CellBE Architecture

We consider real-time systems where the task timing
parameters (i.e. deadlines, periods), and the data
transactions between tasks, tasks and main memory, and
peripherals and main memory are specified. Each
transaction has two endpoints which could be the tasks, the
main memory or the peripherals. The proposed framework
consists of a task schedule on the processing units (i.e.
SPEs) together with a transaction schedule on the buses. In
general, a task and its transactions on the bus are temporally
and spatially dependent. The former occurs, for example,
when a task loads data from memory (i.e. transaction
execution) before processing it (i.e. task execution). The
latter is due to the fact that for a transaction which has a
task as one of its endpoints; the transaction route is
determined by the SPE to which the task is allocated. With
a practical and reasonable assumption, our task model
proposed in the next section will decouple the temporal
relations. The spatial relation, however, can not be isolated.
Moreover, it determines the degree of parallelism on the
bus, because transactions which are spatially overlapping
can not be executed concurrently. For this reason, the
placement of the tasks on SPEs has to take this factor into
account. We call such a task scheduling, a location-aware
scheduling. With regard to the transaction scheduling, we
have proven that a PFair [2] schedule is optimal. However,
due to the constraints induced by spatially overlapping
transactions, it is not possible to use the PFair’s original
proof [2]. Therefore, we derived another proving technique
by modifying the original one.

In the following sections we will discuss the proposed task
model and the scheduling framework.

Task Model
We propose a task model that consists of a set of n
independent periodic

tasks (){ }, , , : []in out
i i i i ie p i nτ γ γΤ = = ∈

i

, where the

task τ has an execution time , a period ie ip , and contains

an infinite number of jobs { }: []j
i i j k∈τ τ= . The

required data transactions of a task to other tasks and main
memory are modeled as inγ and outγ . in

iγ is the input data
transaction that is needed for the execution of a job of the
task iτ and out

iγ is the output data transaction that occurs

after a job of task iτ ends. To decouple the temporal
dependence between a task and its transaction, we use a
double buffering mechanism. This means that input and
output data for job 1j

iτ
+ is being transferred during the

period of jobs j
iτ and 2j

iτ
+ , respectively. This implies that

the period of a transaction equals the period of its tasks. We
argue that this task model is practical and reasonable as it
has been used in the design of real systems, especially
avionic systems. Fig. 2 shows an example of task iτ and its
input and output transactions.

Fig 2: Task Model Example

Problem Statement
Having defined the terminologies, we are ready to formally
define the problem as follows:

Given a CellBE system with a task set Τ together with a
transaction set Γ , find feasible schedules for Τ and Γ .

A system is said to be schedulable if there exist feasible
schedules for both and Γ . Τ

Scheduling Framework
Solving the abovementioned scheduling problem involves
finding: (1) a schedule for the tasks on SPEs and (2) a
schedule for transactions on EIB.

For task scheduling, we suggest the use of multiprocessor
partitioned scheduling algorithms. This decision is justified
by the following reasons:

1. The local-memory based microprocessor
architecture has high task migration overhead
since it requires both task instructions and data to
be loaded into the local memory before the task
can be executed. A partitioned scheduling
algorithm helps to minimize this overhead.

2. The overlaps among transactions are determined
by the location of their endpoints. A migration
multiprocessor scheduler may cause the location of
a task (i.e. a transactions’ endpoint) to be changed
during the course of its execution. For this reason,
the overlaps among transactions in a system using
migration schedulers are intractable.

Consequently, the transaction scheduling problem
is intractable.

3. Except for the case of full migration, unrestricted
dynamic schedulers, the known utilization bounds
of multiprocessor migration and non-migration
schedulers are comparable when the number of
processors is large enough [1].

It is important to notice that the traditional partitioned
scheduling algorithms are not concerned with to which
specific processor a task is allocated. If CPU1 hosts tasks

1 2 3, ,τ τ τ and CPU2 hosts tasks 4 5,τ τ , then switching

1 2 3, ,τ τ τ onto CPU2 and 4 , 5τ τ onto CPU1 causes no
difference in terms of task schedulability. However, for the
problem at hand, knowing exact task location is important
for the transaction schedulability. A bad allocation occurs if
all transactions are spatially overlapping, because this
arrangement reduces the degree of bus parallelism to one.
To deal with this problem we propose a location-aware task
scheduling algorithm that minimizes transaction overlaps
under the task deadline constraints.

Assuming tasks are already allocated onto SPEs and
transaction endpoints are specified, we propose a solution
for scheduling transactions on the bus. For a bus system B
and a transaction set Γ on B , we define an equivalent
homogeneous multiprocessor system M and an equivalent
task set Λ on respectively. We have proven that
given a feasible schedule for on M , we can construct a
feasible schedule for

M
Λ

Γ on B in polynomial time and vice
versa. We therefore can reduce the problem of bus
scheduling into the problem of multiprocessor scheduling,
given the task dependence constraints. Two tasks are said to
be dependent (cannot be scheduled concurrently on two
processors) if their two respective transactions are spatially
overlapping. Although this dependent task model departs
from the independent one, which was used with the original
PFair scheduler [2], we have proven that PFair scheduling
is still optimal under the new constraints. The proof
technique uses the argument on the existence of an integral
optimal solution in linear programming.

References
[1] I. J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J.

Anderson, S. Baruah, A Categorization of Real-time
Multiprocessor Scheduling Problems and Algorithms,
Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, Chapman Hall/ CRC Press. 2004.

[2] S. Baruah, N. Cohen, G. Plaxton, D. Varvel, Proportionate
progress: A notion of fairness in resource allocation,
Algorithmica 15(6), June 1996.

[3] R. Pellizzoni and M. Caccamo, Towards the Predictable
Integration of Real-Time COTS based Systems, Proceedings
of the 28th IEEE RTSS, December 2007.

[4] B. D. Bui, M. Caccamo, L. Sha, J. Martinez, Design and
Evaluation of a Cache Partitioned Environment for Real-
Time Embedded Systems, UIUC Technical Report 2008.

[5] http://www.research.ibm.com/cell/.

j j j1 2

CPU

Bus

iτ
+

input transcation
output transaction

+
iτ iτ

http://www.cs.unc.edu/%7Ebaruah/Papers/1996-baruahCPV-Algorithmica.pdf
http://www.cs.unc.edu/%7Ebaruah/Papers/1996-baruahCPV-Algorithmica.pdf
http://www.research.ibm.com/cell/

