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Introduction 
In this research, we propose a real-time scheduling 
framework on the CellBE microprocessor [5], in order to 
handle the problem of unpredictable task execution time in 
hard real-time systems. A hard real-time system has strict 
requirements on timing behavior of tasks: (1) task worst 
case execution times (WCET) must be reliably estimated 
and (2) task deadlines must be guaranteed. Unfortunately, 
the modern computer architecture has been designed in 
such a way that the estimation of a tight bound WCET is 
very difficult. The problem lies in the uncontrollability of 
both the Front Side Bus (FSB), which is shared between 
CPU and DMA-enabled peripherals, and the cache. In a 
cache-based multitasking microprocessor system, a task 
execution time can be unexpectedly extended by the 
execution of other tasks or DMA-enabled peripherals [3, 4]. 
In our experiments [3], we observed that the extension in 
the execution time to be as high as 44%. This problem is 
potentially more severe in multiprocessor systems as they 
have more entities simultaneously competing for bus 
access.  

Recently, there have been several advanced multiprocessor 
systems being developed, possessing real-time-amicable 
features. Among many, the Cell Broadband Engine 
Architecture (CellBE) [5] is most distinguished for its 
remarkable high performance and low cost. The CellBE is a 
heterogeneous chip multiprocessor. It consists of an IBM 
64-bit Power Architecture core called the Power Processing 
Element (PPE), augmented with eight co-processors called 
Synergistic Processor Elements (SPE), which contain 
256KB of Local Storage (LS). All processing units and 
peripherals communicate with main memory and other 
units through the Element Interconnect Bus, which acts as 
the FSB (Fig. 1 [5]). The EIB consists of four data rings, 
two of which run clockwise and the other two counter-
clockwise. Each ring can allow up to three non overlapping 
concurrent data transfers, which permits the bus system to 
have a maximum of twelve concurrent transactions. More 
importantly, the EIB access is software controllable.  

The CellBE offers two innovative features to avoid the 
unpredictable task execution time problem: (1) fast 
controllable on-chip local memory instead of unpredictable 
cache and (2) software-controllable FSB. However, the 
architecture introduces a new challenge of scheduling tasks 
together with their bus accesses. The goal of our research is 
to solve this challenge. We propose a scheduling 
framework that takes advantage of the multilevel 
parallelism of CellBE i.e. multi-processor and bus-level 
parallelism. To the best of our knowledge, there have been 
no real-time schedulers that have dealt with this scheduling 
problem. 

 
Fig 1: CellBE Architecture 

We consider real-time systems where the task timing 
parameters (i.e. deadlines, periods), and the data 
transactions between tasks, tasks and main memory, and 
peripherals and main memory are specified. Each 
transaction has two endpoints which could be the tasks, the 
main memory or the peripherals. The proposed framework 
consists of a task schedule on the processing units (i.e. 
SPEs) together with a transaction schedule on the buses. In 
general, a task and its transactions on the bus are temporally 
and spatially dependent. The former occurs, for example, 
when a task loads data from memory (i.e. transaction 
execution) before processing it (i.e. task execution). The 
latter is due to the fact that for a transaction which has a 
task as one of its endpoints; the transaction route is 
determined by the SPE to which the task is allocated. With 
a practical and reasonable assumption, our task model 
proposed in the next section will decouple the temporal 
relations. The spatial relation, however, can not be isolated. 
Moreover, it determines the degree of parallelism on the 
bus, because transactions which are spatially overlapping 
can not be executed concurrently. For this reason, the 
placement of the tasks on SPEs has to take this factor into 
account. We call such a task scheduling, a location-aware 
scheduling. With regard to the transaction scheduling, we 
have proven that a PFair [2] schedule is optimal. However, 
due to the constraints induced by spatially overlapping 
transactions, it is not possible to use the PFair’s original 
proof [2]. Therefore, we derived another proving technique 
by modifying the original one. 

In the following sections we will discuss the proposed task 
model and the scheduling framework. 

Task Model 
We propose a task model that consists of a set of n 
independent periodic 
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required data transactions of a task to other tasks and main 
memory are modeled as inγ  and outγ . in

iγ  is the input data 
transaction that is needed for the execution of a job of the 
task iτ  and out

iγ is the output data transaction that occurs 

after a job of task iτ  ends. To decouple the temporal 
dependence between a task and its transaction, we use a 
double buffering mechanism. This means that input and 
output data for job 1j

iτ
+ is being transferred during the 

period of jobs j
iτ and 2j

iτ
+ , respectively. This implies that 

the period of a transaction equals the period of its tasks. We 
argue that this task model is practical and reasonable as it 
has been used in the design of real systems, especially 
avionic systems. Fig. 2 shows an example of task iτ  and its 
input and output transactions. 
          

 
Fig 2: Task Model Example 

 
Problem Statement 
Having defined the terminologies, we are ready to formally 
define the problem as follows: 

Given a CellBE system with a task set Τ  together with a 
transaction set Γ , find feasible schedules for Τ  and Γ .  

A system is said to be schedulable if there exist feasible 
schedules for both  and Γ . Τ

 
Scheduling Framework 
Solving the abovementioned scheduling problem involves 
finding: (1) a schedule for the tasks on SPEs and (2) a 
schedule for transactions on EIB. 

For task scheduling, we suggest the use of multiprocessor 
partitioned scheduling algorithms. This decision is justified 
by the following reasons: 

1. The local-memory based microprocessor 
architecture has high task migration overhead 
since it requires both task instructions and data to 
be loaded into the local memory before the task 
can be executed. A partitioned scheduling 
algorithm helps to minimize this overhead. 

2. The overlaps among transactions are determined 
by the location of their endpoints. A migration 
multiprocessor scheduler may cause the location of 
a task (i.e. a transactions’ endpoint) to be changed 
during the course of its execution. For this reason, 
the overlaps among transactions in a system using 
migration schedulers are intractable. 

Consequently, the transaction scheduling problem 
is intractable. 

3. Except for the case of full migration, unrestricted 
dynamic schedulers, the known utilization bounds 
of multiprocessor migration and non-migration 
schedulers are comparable when the number of 
processors is large enough [1]. 

It is important to notice that the traditional partitioned 
scheduling algorithms are not concerned with to which 
specific processor a task is allocated. If CPU1 hosts tasks 

1 2 3, ,τ τ τ  and CPU2 hosts tasks 4 5,τ τ , then switching 

1 2 3, ,τ τ τ  onto CPU2 and 4 , 5τ τ  onto CPU1 causes no 
difference in terms of task schedulability. However, for the 
problem at hand, knowing exact task location is important 
for the transaction schedulability. A bad allocation occurs if 
all transactions are spatially overlapping, because this 
arrangement reduces the degree of bus parallelism to one. 
To deal with this problem we propose a location-aware task 
scheduling algorithm that minimizes transaction overlaps 
under the task deadline constraints.  

Assuming tasks are already allocated onto SPEs and 
transaction endpoints are specified, we propose a solution 
for scheduling transactions on the bus. For a bus system B  
and a transaction set Γ  on B , we define an equivalent 
homogeneous multiprocessor system M  and an equivalent 
task set Λ  on   respectively. We have proven that 
given a feasible schedule for  on M , we can construct a 
feasible schedule for 

M
Λ

Γ  on B  in polynomial time and vice 
versa. We therefore can reduce the problem of bus 
scheduling into the problem of multiprocessor scheduling, 
given the task dependence constraints. Two tasks are said to 
be dependent (cannot be scheduled concurrently on two 
processors) if their two respective transactions are spatially 
overlapping. Although this dependent task model departs 
from the independent one, which was used with the original 
PFair scheduler [2], we have proven that PFair scheduling 
is still optimal under the new constraints. The proof 
technique uses the argument on the existence of an integral 
optimal solution in linear programming. 
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