
Runtime Performance Monitoring of Architecturally Diverse Systems 
Joseph M. Lancaster, Roger D. Chamberlain 

{lancaster, roger}@wustl.edu 
Dept. of Computer Science and Engineering, Washington University in St. Louis 

 
Introduction 
Architecturally diverse computing systems (i.e., systems 
built from heterogeneous compute resources) are prevalent 
in HPEC environments due to the strict power and size 
limitations of the application domain.  Utilizing the 
strengths of these different computing architectures can 
lead to greater power and size efficiencies relative to 
homogeneous systems alone.  However, diverse computing 
systems present many application development challenges 
such as designing an application using many different 
architectures (e.g. x86/PowerPCs, DSPs, or FPGAs), 
partitioning the application across the different components, 
functionally debugging the application, and determining 
that the application meets performance requirements.  In 
addition, these systems operate as a distributed system, 
where there is no global clock to order events. 

This paper describes a novel runtime monitoring system 
that enables the developer to extract information from the 
execution of a streaming application.  The runtime 
monitoring system evaluates performance expectations of a 
streaming application provided by the user to enable better 
system reliability and a shorter development cycle. 

Streaming Programs 
Generally, streaming applications can be thought of as 
course-grained dataflow computations in which 
computation blocks, or kernels, are interconnected by edges 
over which data is communicated. An example streaming 
application topology is illustrated in Figure 1. A data source 
delivers data to block A, the output data stream from block 
A is delivered as an input stream to block B and C, etc. 

 
Figure 1: Example streaming application. 

Dataflow is a natural computational model for reasoning 
about applications on diverse computing systems since the 
memory references are constrained to a stream buffer inside 
each kernel, the communication of information is explicit, 
and both wide and deep parallelism can be expressed in a 
straightforward manner.  Since many diverse systems in the 
HPEC domain do not have shared memory, this encourages 
good memory partitioning of the application.  This model 
also helps the developer reason about utilization of shared 
computational and interconnect resources since an explicit 
mapping of application kernels to compute resources and 
edges to interconnect resources must be performed to 
deploy the application on a real system. 

Understanding Performance 
For non-streaming applications on monolithic platforms, 
performance is typically understood via instrumentation 

that generates statistics at runtime (e.g. gprof).   However, 
developing a reasonable global view of a distributed 
application’s performance is not as straightforward.  
Distributed applications do not typically share storage, nor 
is there a universal program counter that accurately reflects 
the state of the application.  A system-wide performance 
monitoring tool is essential to fully understand the 
characteristics of these applications. 

Figure 2 shows an instrumentation of the sample streaming 
application described in Figure 1.  The monitor observes 
communication of data on edges between kernels, treating 
the kernels as black boxes.  This simplifies the 
implementation of the runtime monitor while providing 
much useful performance information.  If more visibility is 
needed inside a kernel, the developer can simply provide an 
edge on the kernel boundary for the monitor. 

 
Figure 2: An example black-box monitor for the application in 
Figure 1. The edges between blocks are tappped to determine 
application bottlenecks.  

Ideally, a performance monitoring system would provide 
timestamps for every event as data flows through the 
system, much like current simulations systems offer but 
operating at full system speed.  Additionally, no overhead 
and perturbation of the system should occur so the 
measurements are perfectly accurate.  Achieving this is 
impossible on most real systems as the bandwidth and 
storage are limited.  Hence, any runtime system monitor 
must be carefully designed to minimize both the overhead 
and perturbation of the execution so as to not overwhelm 
the system with measurement data. 

A popular approach to monitoring the performance of a 
program is to aggregate performance information over the 
entire run of a dataset.  The aggregate information is then 
presented at the end of the run. This approach, however, 
misses a key piece of information: when do performance 
anomalies occur during the run? Revealing this information 
to real-time system developers can help them track down 
important performance anomalies that may not be present in 
aggregate statistics. 

To provide temporal information, our monitor uses a 
technique based on the concept of frames from the media 
compression literature.  Instead of measuring over the entire 
execution of a program, a measurement is divided into 
“frames.”  A frame for a kernel is defined as a segment of 
the execution given in time.  Statistics are initialized each 



time a new frame is encountered and the results are reported 
at the end of a frame.  In this way, the system provides an 
ordered set of frames, each containing its measured 
performance, from which a developer can reason about the 
behavior of the application over time.  Figure 3 shows an 
example visualization of a queue length, Lq, per frame.   

 
Figure 3: Box-plot summarizing the queue length for each 

frame.  The middle bar represents the median and the 
horizontal bars denote the quartiles.  Outliers are shown as 

dots.  

Frames allow the developer to control the time resolution in 
which measurements are reported.  Larger frames will 
reduce the bandwidth required for the monitoring task at the 
expense of temporal precision.  While this is an essential 
first step in reducing the required bandwidth, the runtime 
monitor uses a number of additional data compression 
techniques.  One of the most powerful compression tools of 
this monitoring system is the online evaluation of 
developer-driven data collection. 

Developer-guided Performance Monitoring 
A number of high-performing compression algorithms have 
been developed for reducing storage requirements of trace 
data.  However, many of these have buffer requirements or 
computational complexity issues which make them 
unsuitable for HPEC environments.  Trace compression 
also focuses heavily on lossless compression to support 
architectural simulation which may not be necessary for 
verifying performance.  Instead of trying to create a 
compression algorithm that is targeted toward a small set of 
metrics (e.g., PC or instruction logging), this work utilizes 
input from the developer to guide compression.  This 
enables performance measurements of interest to be 
collected with high fidelity while other measurements can 
be compressed more aggressively. 

The monitoring system allows three categories of 
developer-guidance.  First, the developer can specify a set 
of direct measurements to be extracted from the execution 
of the program.  An example of this includes measuring the 
throughput of the edges in an application, or throughput 
only under certain conditions (e.g. when an input queue is 
not empty).  Direct measurements are useful for developing 
a high-level view of the application performance. 

Second, the developer can assert a number of performance 
expectations one has about the application.  These 
expectations are described as a set of assertions which in 
turn are translated into predicates that the runtime system 
can evaluate.  If the predicates hold, the developer then 
knows that the system is meeting expectations, at least for 
the dataset that was executed.  When one or more assertions 
fail, there are a number of ways to proceed.  A sensible way 

for soft constraints is to simply report the number of frames 
which it held.  For more serious performance issues, the 
failure mode can be to dump trace data to give simulator-
like visibility to help diagnose the anomaly.   

The third category of developer-guidance is performance 
expectations that are conditioned by statistical measures.  
For instance, one might want to know whether or not the 
occupancy of a queue matches a certain distribution.  Since 
this is an empirical measurement, a Q-Q test can be used to 
determine how closely the queue occupancy matches the 
theoretical distribution.  To evaluate whether this type of 
predicate holds, a statistical threshold of similarity needs to 
be specified. 

In order to realize such a system, a simple and expressive 
language needs to be utilized to articulate the performance 
expectations.  Several languages have been proposed for 
evaluating functional correctness of real time systems, such 
as Linear Temporal Logic and Interval Temporal Logic.  
The first implementation of the performance monitor 
utilizes Logic of Constraints (LoC) [1] as the assertion 
input mechanism.  LoC is a formal language which supports 
describing both performance and functional predicates.  An 
example performance assertion of the throughput of block 
A in Figure 1 can be stated informally as: “at least 10 
A.OutputData events will be produced in any period of 
1000 time units.”  The corresponding LoC predicate can be 
written as: 

t(A.OutputData[i +10]) – t(A.OutputData[i ]) ≤ 1000 

Some related research into user-guided performance 
monitoring exists [2, 3, 4].  In [2], logs are produced which 
can be analyzed offline and their approach is not 
appropriate for concurrent systems.  In [3], performance 
assertions can be evaluated for constraints which touch only 
a single process, which is very limiting for HPEC 
environments.  [4] is targeted toward mobile devices and 
they extend the work in [3] to evaluate assertions across 
multiple processes.  However, none of these proposals work 
in an architecturally-diverse computing platform, are not 
targeted toward a streaming programming model, and do 
not provide the ability to evaluate system-level performance 
assertions. 

Conclusions 
The need to better understand the performance in HPEC 
systems is clear.  The runtime performance monitor 
described in this paper will help this task by providing both 
measurements and performance verification of an 
application executing a real-world dataset.  

 [1] Xi Chen, Hsieh, H., Balarin, F. and Watanabe, Y. “Logic of 
constraints: a quantitative performance and functional 
constraint formalism,” IEEE Trans. Computer-Aided Design 
of Integrated Circuits and Systems, vol.23, no.8, pp. 1243-
1255, Aug. 2004. 

 [2] Perl, S. E. and Weihl, W. E. “Performance assertion checking,” 
SIGOPS Oper. Syst. Rev. 27, no. 5, pp. 134-145, Dec. 1993. 

 [3] Vetter, J. S. and Worley, P. H. “Asserting performance 
expectations,” In Proc. of ACM/IEEE Conference on 
Supercomputing, pp. 1-13, 2002. 

[4] Lencevicius, R. and Metz, E. “Performance assertions for 
mobile devices,” In Proc. of Int’l Symposium on Software 
Testing and Analysis, pp. 225-232, July 2006. 


