
Runtime Performance Monitoring of Architecturally Diverse Systems
Joseph M. Lancaster, Roger D. Chamberlain

{lancaster, roger}@wustl.edu
Dept. of Computer Science and Engineering, Washington University in St. Louis

Introduction
Architecturally diverse computing systems (i.e., systems
built from heterogeneous compute resources) are prevalent
in HPEC environments due to the strict power and size
limitations of the application domain. Utilizing the
strengths of these different computing architectures can
lead to greater power and size efficiencies relative to
homogeneous systems alone. However, diverse computing
systems present many application development challenges
such as designing an application using many different
architectures (e.g. x86/PowerPCs, DSPs, or FPGAs),
partitioning the application across the different components,
functionally debugging the application, and determining
that the application meets performance requirements. In
addition, these systems operate as a distributed system,
where there is no global clock to order events.

This paper describes a novel runtime monitoring system
that enables the developer to extract information from the
execution of a streaming application. The runtime
monitoring system evaluates performance expectations of a
streaming application provided by the user to enable better
system reliability and a shorter development cycle.

Streaming Programs
Generally, streaming applications can be thought of as
course-grained dataflow computations in which
computation blocks, or kernels, are interconnected by edges
over which data is communicated. An example streaming
application topology is illustrated in Figure 1. A data source
delivers data to block A, the output data stream from block
A is delivered as an input stream to block B and C, etc.

Figure 1: Example streaming application.

Dataflow is a natural computational model for reasoning
about applications on diverse computing systems since the
memory references are constrained to a stream buffer inside
each kernel, the communication of information is explicit,
and both wide and deep parallelism can be expressed in a
straightforward manner. Since many diverse systems in the
HPEC domain do not have shared memory, this encourages
good memory partitioning of the application. This model
also helps the developer reason about utilization of shared
computational and interconnect resources since an explicit
mapping of application kernels to compute resources and
edges to interconnect resources must be performed to
deploy the application on a real system.

Understanding Performance
For non-streaming applications on monolithic platforms,
performance is typically understood via instrumentation

that generates statistics at runtime (e.g. gprof). However,
developing a reasonable global view of a distributed
application’s performance is not as straightforward.
Distributed applications do not typically share storage, nor
is there a universal program counter that accurately reflects
the state of the application. A system-wide performance
monitoring tool is essential to fully understand the
characteristics of these applications.

Figure 2 shows an instrumentation of the sample streaming
application described in Figure 1. The monitor observes
communication of data on edges between kernels, treating
the kernels as black boxes. This simplifies the
implementation of the runtime monitor while providing
much useful performance information. If more visibility is
needed inside a kernel, the developer can simply provide an
edge on the kernel boundary for the monitor.

Figure 2: An example black-box monitor for the application in
Figure 1. The edges between blocks are tappped to determine
application bottlenecks.

Ideally, a performance monitoring system would provide
timestamps for every event as data flows through the
system, much like current simulations systems offer but
operating at full system speed. Additionally, no overhead
and perturbation of the system should occur so the
measurements are perfectly accurate. Achieving this is
impossible on most real systems as the bandwidth and
storage are limited. Hence, any runtime system monitor
must be carefully designed to minimize both the overhead
and perturbation of the execution so as to not overwhelm
the system with measurement data.

A popular approach to monitoring the performance of a
program is to aggregate performance information over the
entire run of a dataset. The aggregate information is then
presented at the end of the run. This approach, however,
misses a key piece of information: when do performance
anomalies occur during the run? Revealing this information
to real-time system developers can help them track down
important performance anomalies that may not be present in
aggregate statistics.

To provide temporal information, our monitor uses a
technique based on the concept of frames from the media
compression literature. Instead of measuring over the entire
execution of a program, a measurement is divided into
“frames.” A frame for a kernel is defined as a segment of
the execution given in time. Statistics are initialized each

time a new frame is encountered and the results are reported
at the end of a frame. In this way, the system provides an
ordered set of frames, each containing its measured
performance, from which a developer can reason about the
behavior of the application over time. Figure 3 shows an
example visualization of a queue length, Lq, per frame.

Figure 3: Box-plot summarizing the queue length for each

frame. The middle bar represents the median and the
horizontal bars denote the quartiles. Outliers are shown as

dots.

Frames allow the developer to control the time resolution in
which measurements are reported. Larger frames will
reduce the bandwidth required for the monitoring task at the
expense of temporal precision. While this is an essential
first step in reducing the required bandwidth, the runtime
monitor uses a number of additional data compression
techniques. One of the most powerful compression tools of
this monitoring system is the online evaluation of
developer-driven data collection.

Developer-guided Performance Monitoring
A number of high-performing compression algorithms have
been developed for reducing storage requirements of trace
data. However, many of these have buffer requirements or
computational complexity issues which make them
unsuitable for HPEC environments. Trace compression
also focuses heavily on lossless compression to support
architectural simulation which may not be necessary for
verifying performance. Instead of trying to create a
compression algorithm that is targeted toward a small set of
metrics (e.g., PC or instruction logging), this work utilizes
input from the developer to guide compression. This
enables performance measurements of interest to be
collected with high fidelity while other measurements can
be compressed more aggressively.

The monitoring system allows three categories of
developer-guidance. First, the developer can specify a set
of direct measurements to be extracted from the execution
of the program. An example of this includes measuring the
throughput of the edges in an application, or throughput
only under certain conditions (e.g. when an input queue is
not empty). Direct measurements are useful for developing
a high-level view of the application performance.

Second, the developer can assert a number of performance
expectations one has about the application. These
expectations are described as a set of assertions which in
turn are translated into predicates that the runtime system
can evaluate. If the predicates hold, the developer then
knows that the system is meeting expectations, at least for
the dataset that was executed. When one or more assertions
fail, there are a number of ways to proceed. A sensible way

for soft constraints is to simply report the number of frames
which it held. For more serious performance issues, the
failure mode can be to dump trace data to give simulator-
like visibility to help diagnose the anomaly.

The third category of developer-guidance is performance
expectations that are conditioned by statistical measures.
For instance, one might want to know whether or not the
occupancy of a queue matches a certain distribution. Since
this is an empirical measurement, a Q-Q test can be used to
determine how closely the queue occupancy matches the
theoretical distribution. To evaluate whether this type of
predicate holds, a statistical threshold of similarity needs to
be specified.

In order to realize such a system, a simple and expressive
language needs to be utilized to articulate the performance
expectations. Several languages have been proposed for
evaluating functional correctness of real time systems, such
as Linear Temporal Logic and Interval Temporal Logic.
The first implementation of the performance monitor
utilizes Logic of Constraints (LoC) [1] as the assertion
input mechanism. LoC is a formal language which supports
describing both performance and functional predicates. An
example performance assertion of the throughput of block
A in Figure 1 can be stated informally as: “at least 10
A.OutputData events will be produced in any period of
1000 time units.” The corresponding LoC predicate can be
written as:

t(A.OutputData[i +10]) – t(A.OutputData[i]) ≤ 1000

Some related research into user-guided performance
monitoring exists [2, 3, 4]. In [2], logs are produced which
can be analyzed offline and their approach is not
appropriate for concurrent systems. In [3], performance
assertions can be evaluated for constraints which touch only
a single process, which is very limiting for HPEC
environments. [4] is targeted toward mobile devices and
they extend the work in [3] to evaluate assertions across
multiple processes. However, none of these proposals work
in an architecturally-diverse computing platform, are not
targeted toward a streaming programming model, and do
not provide the ability to evaluate system-level performance
assertions.

Conclusions
The need to better understand the performance in HPEC
systems is clear. The runtime performance monitor
described in this paper will help this task by providing both
measurements and performance verification of an
application executing a real-world dataset.

 [1] Xi Chen, Hsieh, H., Balarin, F. and Watanabe, Y. “Logic of
constraints: a quantitative performance and functional
constraint formalism,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol.23, no.8, pp. 1243-
1255, Aug. 2004.

 [2] Perl, S. E. and Weihl, W. E. “Performance assertion checking,”
SIGOPS Oper. Syst. Rev. 27, no. 5, pp. 134-145, Dec. 1993.

 [3] Vetter, J. S. and Worley, P. H. “Asserting performance
expectations,” In Proc. of ACM/IEEE Conference on
Supercomputing, pp. 1-13, 2002.

[4] Lencevicius, R. and Metz, E. “Performance assertions for
mobile devices,” In Proc. of Int’l Symposium on Software
Testing and Analysis, pp. 225-232, July 2006.

