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Introduction 
High-performance embedded computing (HPEC) systems 
run compute-intensive applications such as video 
compression, image processing, networking and software-
defined radio. Familiar CPU, DSP, ASIC and FPGA 
architectures, which once delivered increasing performance 
at a Moore’s Law rate, have reached several fundamental 
scaling limits. A new platform for HPEC is required. 

A number of parallel processing devices have appeared, 
seeking to overcome these limits. Those adapted from 
general-purpose or scientific computing may not be long-
term scalable, reliable, or appropriate to HPEC applications. 
A new architecture, the Massively Parallel Processor Array 
(MPPA) has been expressly developed as a powerful, 
scalable and easy to use HPEC platform. 

Ambric chose a parallel programming model first, for 
development, performance and scalability. This model is 
realized in the Am2045, which contains 168 32-bit DSPs, 
168 32-bit RISC CPUs and 336 memory banks. It executes 
over one trillion operations per second, fifty 16-bit GMACS 
and over 125 thousand 32-bit MIPS [1,2].  This paper 
discusses development of a representative application 
(JPEG image compression) on the Am2045 to illustrate the 
methodology and effort involved in programming MPPAs. 

SMP and SIMD Architectures 
General-purpose microprocessors, microcontrollers and 
DSPs use a single CPU with a single memory space. 
Performance increases from processor architecture reached 
their limits by about 2003, so speedup fell from 52% to 
about 20% per year, roughly the silicon technology alone. If 
CPUs and DSPs had maintained the earlier rate, today they 
would routinely have 15 GHz performance. ASICs and 
FPGAs have their own scaling limits. ASIC fabrication 
expense is going up exponentially with the cost to build a 
foundry.  ASIC and FPGA hardware design and verification 
productivity grows much slower than Moore’s Law, so 
development cost has become the major project expense, 
also rising exponentially. 

A number of single-chip parallel processing architectures 
are entering mainstream use in HPEC systems. Symmetric 
MultiProcessors (SMP), now common in general-purpose 
multicore CPUs, are appearing in embedded systems.  
Multiple processors are connected to cached shared 
memory, also used for inter-processor communication.  

SMP’s compelling property is its ability to run large, 
existing single-processor applications without modification. 
This is required for general-purpose computing, but it 
brings a heavy cost.  The relative ease of adoption of 
multicore SMPs in general-purpose computing is 
misleading in the long run.  

SMP interprocessor communication is a side-effect of cache 
coherency, which is slow and inefficient. Massively parallel 
SMPs require many-to-many cache coherency, which scales 
poorly. Achieving correct interprocessor synchronization is 
left up to the programmer. Debugging massively parallel 
applications promises to be difficult at best. SMPs are 
seriously non-deterministic, and get more so as they get 
larger [3], not a good property for time-critical and mission-
critical embedded systems. Single-chip massively parallel 
SMP platforms are unlikely to be well-suited to the 
development, reliability, cost and power constraints of 
HPECs in the long run. 

SIMD (single-instruction, multiple data) architectures have 
dominated the scientific high-performance computing 
(HPC) world since the time of the Cray-1.  Workloads such 
as computational geoscience, chemistry and biology, 
structural analysis, and medical image processing are 
massively data-parallel, feed-forward, regular and floating-
point intensive. SIMD parallel processors harness this 
regularity with tens to hundreds or more deeply pipelined 
datapaths, all under the control of one instruction stream. 

Serial dependencies, feedback loops or short vectors put 
SIMD’s long pipelines at a disadvantage. Data-dependent 
branching is expensive and deep pipelining makes branches 
cost many cycles. Some embedded application kernels in 
image and video processing resemble HPC workloads 
enough to run well on SIMDs.  But as video, radio and 
networking algorithms get more sophisticated and complex, 
shorter vectors, irregular structure and data-dependency are 
common, putting SIMD at a severe disadvantage [4]. 

SIMD scalability is also limited by vector length. As 
graphics processing units evolve into HPC processors [5], 
they are adopting SMP/SIMD hybrid architectures, with the 
disadvantages of each in HPEC applications. 

MPPA Architecture 
The Massively Parallel Processor Array is a purpose-built 
platform for HPEC. Its objective is to optimize performance 
and performance per watt for HPEC applications, with 
reasonable and reliable application development, and long-
term hardware and development scalability. 

By starting with a good programming model, the Structural 
Object Programming Model, and developing silicon and 
tools to realize that model, Ambric’s MPPA architecture is 
very well suited to HPEC applications, reliable, and has 
long-term hardware and software development scalability. 

MPPA Programming Model and Tools 
In Ambric’s Structural Object Programming Model, objects 
consist of one or more software programs running 
concurrently on an asynchronous array of Ambric 



processors and memories. A leaf object runs on a single 
processor or memory, while a composite object is a 
hierarchical composition of objects. Objects run 
independently at their own rates. They are strictly 
encapsulated, execute with no side effects on one other, and 
have no implicitly shared memory.  

Objects exchange data and control through a structure of 
self-synchronizing Ambric channels. Each channel is word-
wide, unidirectional, point-to-point, strictly ordered, and 
acts like a FIFO-buffer. Objects are mixed and matched 
hierarchically to create new objects, snapped together 
through channel interfaces. These composite objects can be 
as simple as a scaler or as complex as an entire application.  
Many pre-tested objects kept in libraries are easily reused, 
with excellent reliability thanks to strict encapsulation. 

The developer expresses an application’s object-level 
parallel structure in a coordination language called aStruct, 
which defines how objects are connected to each other. This 
language is essentially a simple textual representation of an 
implementation block diagram.  

Having hundreds of processors available to implement an 
application provides rich flexibility to the developer, who 
can break down the target application into individual 
function objects that map naturally onto separate 
processors. Then the task of implementing, testing and 
tuning each of these objects becomes simple and self-
contained.  

This Structural Object Programming Model makes it 
efficient for a team of software developers to work in 
parallel and quickly implement any given application, each 
programmer being assigned a number of simple, well-
defined functions to run on individual processors. The code 
running on each individual object can be written either in 
Java or in assembly. Due to the simplicity of the 
architecture, the RISC assembly language is relatively 
straightforward to use to produce optimal code. 

Once an application is developed and compiled in Ambric’s 
Eclipse-based IDE, aDesigner, its cycle-accurate simulator 
is used for initial testing and debugging.  Then automatic 
placement and routing tools map the design onto 
processors, memories and channels, and download it into 
the Am2045 device, in a minute or less.  Source-level 
parallel debugging and performance analysis on the actual 
running system makes application validation and tuning 
straightforward. Development is (reportedly) actually fun.  

MPPA Hardware 
Ambric’s Am2045 device contains 168 32-bit DSPs, 168 
32-bit RISC CPUs and 336 memory banks, which all run at 
300 MHz. Each processor and memory executes a leaf 
object in the programming model.  A 32-bit hierarchical 
configurable interconnect of Ambric channels implements 
the structure. Its dedicated debug network connects to the 
host for complete runtime control and visibility. 

Am2045 delivers performance of over one trillion 
operations per second, fifty 16-bit GMACS and over 125 
thousand 32-bit MIPS. It has a 4-lane PCI Express host 
interface, two 32-bit SDRAM controllers, and four 32-bit 
general-purpose I/O ports for interconnecting multiple 

chips, and for interfacing with ADCs, DACs and other 
hardware. Am2045 is implemented as a 130nm standard 
cell ASIC. Its power dissipation is from 6 to 14 W. 

MPPA Application Development 
JPEG is at the root of nearly all image and video 
compression algorithms, so a JPEG encoder is a realistic 
example of a complete HPEC application. A three phase 
methodology was used: functional implementation, 
optimization and validation. 

The first phase is to produce a reference code that will run 
correctly in the development environment of that chip, as a 
starting point for the fully optimized implementation. 
Usually this code developed during this phase is abstracted 
from most features of the target architecture, allowing it to 
remain simpler, more readable, and more general. 

The second phase is to improve speed to meet application 
requirements. As with hardware designs, the software 
developer has an opportunity to trade area for speed. Time-
consuming blocks can be parallelized onto multiple 
processors in many ways. Functional parallelism can be 
used to run different parts of an algorithm on successive 
processors. Data parallelism can be used to run the same 
algorithm on independent blocks of data using different 
processors. The developer may also optimize each object’s 
code, as with conventional DSPs. Simpler target processors 
combined with less stringent requirements on the code 
running on each processor makes fully optimized assembly 
code simpler and not as often needed. This phase may be 
done in simulation with a testbench and/or on real hardware 
with live data. 

Finally the third phase is to thoroughly validate the 
application on hardware in real time. Am2045’s dedicated 
debug and visibility facilities are used through aDesigner’s 
runtime debugging and performance analysis tools. 

The entire JPEG encoder uses less than 5% of the Am2045 
device capacity. It achieves 72 frames per second 
throughput, vs. the 60 fps target, using a balanced 
combination of Java and about 300 lines of assembly code. 

The JPEG implementation on the Ambric Am2045 MPPA 
architecture illustrates an HPEC platform and development 
methodology that can easily be scaled to achieve levels of 
performance higher than any high-end DSP and comparable 
to those achieved by many FPGAs and even ASICs. 
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