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Introduction 

The age of multicore processors has made the 

decomposition of large data sets and distribution of that 

data through hierarchical memory structures a key hurdle in 

both program efficiency and programmer productivity.  

Single cores often have limited local storage.  For example, 

the current implementation of the Cell Broadband Engine 

(Cell/B.E.) processor combines one Power Processing 

Element (PPE) with 8 identical Synergistic Processing 

Elements (SPE).  Each SPE contains a high-speed SIMD 

processor with its own 256 kB local store (LS) and DMA 

engine as shown in Figure 1.   Larger system memory is 

available via a memory controller with a bandwidth of 25.6 

GB/s – much less than the high speed Element Interconnect 

Bus (EIB).  These issues are not unique to the Cell 

processor; software cache management on Intel Core 2 

processors, shared memory management on embedded DSP 

boards, and management of other modern memory 

structures require programmer skill and time to produce 

efficient applications.  

 

Figure 1 – The current Cell/B.E. Processor combines a PPE 

core with 8 SPE cores, all interconnected via a high-speed bus. 

Previously, the Gedae programming language has been 

used to benchmark the Cell/B.E. platform for several key 

applications, including matrix multiplication and both the 

polar format algorithm (PFA) and convolution 

backprojection (CBP) methods of synthetic aperture radar 

(SAR) image processing.  To optimally use the hierarchical 

memory of the Cell/B.E. architecture, complex flow graphs 

were created.  These flow graphs achieved efficiencies at or 

above hand-coded benchmarks for the architecture, but the 

complexity of the programs was not substantially better 

than the hand-coded versions.  Several ad hoc programming 

constructs were utilized to efficiently use the hardware, 

including the decomposition and distribution of the data 

sets and the multibuffering of the communication between 

system memory and SPE LS.  This presentation will discuss 

additions to the Gedae language which automate the 

decomposition, communication, and multibuffering of large 

data sets.  Through the specification of token 

decomposition and mapping of token parts to memory 

partitions, the Gedae compiler autocodes the 

implementation, inserts efficiency considerations such as 

use of DMA and multibuffering, protects against pointer 

misuse, and provides readability, maintainability, and 

portability of the algorithm design.  The three benchmarks 

have been reimplemented using the new capability, and the 

focus of the discussion will be illustrating how the 

benchmarks utilize the features and demonstrating the 

automated implementation still achieves the highest levels 

of performance. 

Matrix Multiplication Algorithm 

The matrix multiply’s core operation is a multiply-add 

which lends itself well to the SPE’s VMX SIMD instruction 

set.  Also, the operation can be easily decomposed into tiles 

that fit inside the SPEs’ limited local storage.  To perform a 

parallel matrix multiply, we tile the matrices and multiply a 

row of tiles from the first matrix with a column of tiles from 

the second matrix, accumulating the results, i.e., 

out[p,i1,i2][j1,j2] += [p]a[i2][k2](i1,k1) * b[k2][j2](j1,k1) 

where the parentheses notation indicates temporal 

distribution, the square brace preindex indicates spatial 

distribution, and the square brace postindex indicates 

normal array indices. 

A key issue in implementing this benchmark is overlapping 

the communication with the processing.  A general matrix 

multiply accumulate kernel (equivalent to BLAS’ GEMM 

operation) is the workhorse of the tiled algorithm, and if the 

developer can fetch the next tiles to process while the 

GEMM operation is processing the current tiles, the 

algorithm can achieve close to the highest FLOP count for 

the hardware. The theoretical maximum performance of a 

single Cell/B.E. chip is 204.8 GFLOPS, and the Gedae 

implementation of this algorithm can maintain a rate of 

95% of that peak theoretical rate using a block data layout 

and 84% using a normal data layout. 

To tile the matrices in this algorithm, we introduce tiled 

data streams to the language.  A non-tiled R-by-C matrix 

stream is declared as 

stream datatype in[R][C]; 

We extend this declaration to include an optional tile size 

Rt-by-Ct,  



 

stream datatype in[Rt:R][Ct:C]; 

where the memory region is defined by the R and C 

variables but the token is defined by the Rt and Ct 

variables.  The pointer “in” is the address of the first 

element of the tile, inside the R-by-C region.  The i
th

 row of 

the tile can be accessed by adding i*C to the pointer.   

Using this new syntax, new partitioning and concatenation 

kernels are available to partition matrices spatiallyand 

temporally, which can be generated and inserted into the 

application automatically based on the developer’s 

decomposition of the data set.  While 2-d partitioning can 

be done with this syntax, we have chosen to implement this 

benchmark using a nested partitioning, partitioning the left-

hand matrix first row-wise and then column-wise and 

partitioning the right-hand matrix first column-wise and 

then row-wise.  The temporal partitioning is shown in 

Figure 2 and the temporal concatenation in Figure 3. 

 

Figure 2 – Form the temporal partitioning and iteration 

required to implement a tiled matrix multiply. 

To perform the partitioning and concatenation kernels 

inplace (without memory copies), pointers are manipulated.  

The partitioning kernel is straightforward; an input token 

arrives, and pointers to submatrices are sent downstream.  

The concatenation kernel requires extra care by the 

compiler’s scheduling algorithm.  Pointers are fanning-in to 

form a larger output token; thus, the concatenation kernel 

must provide submatrix pointers to the upstream kernels.  

With this pointer manipulation and tiling syntax, the 

algorithm can be written using 10 kernels, none of which 

contains more than 10 lines of code in its Apply method. 

 

Figure 3 – Form the temporal concatenation of the matrix 

products. 

Synthetic Aperture Radar Algorithm 

The PFA SAR algorithm has two key stages: the range 

processing of the rows of the matrix and the azimuth 

processing of the columns of the matrix.  To distribute the 

SAR algorithm we must add three stages: the partitioning of 

the data to distribute the rows across the processors, a 

corner turn of the data (distributed matrix transpose) to 

transition between range and azimuth processing, and the 

concatenation of the column-based results.  In real-world 

applications, we must also do additional preprocessing to 

unpack error check the data.   The Gedae implementation of 

this distributed algorithm achieves over 88 GFLOPs on 8 

SPEs, sustaining a rate of 18.4 GB/s to multibank system 

memory, which acts as a bottleneck to the FLOP rate.  

 

Figure 4 – Corner-turn with adjoin implemented with tiling. 

The range, corner-turn with adjoin, and azimuth phases of 

the algorithm can each be easily written using the tiling 

notation.  The corner-turn with adjoin phase is shown in 

Figure 4.  Each SPE will transpose 1/N
th

 of the rows of the 

matrix.  The spatial partitioning and concatenation kernels 

are used to distribute the work to “p” processors, 

partitioning row-wise and concatenating column-wise.  The 

transpose subgraph further tiles the data for use on the SPE, 

partitioning the data in both dimensions.  The entire PFA 

application uses 20 kernels, each with no more than 10 lines 

of Apply method code. 

The CBJ SAR algorithm is also presented.  The CBJ 

algorithm decomposes into tiles, as shown in Figure 5, 

although the decomposition must be arranged carefully to 

minimize DMA accesses over the memory controller. 

 
Figure 5 – Backprojection can be decomposed such that only 

one tile is processed at a time. 
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