

Simple, Efficient, Portable Decomposition of Large Data Sets
William Lundgren (Gedae, Inc., wlundgren@gedae.com), David Erb (IBM, djerb@us.ibm.com), Max Aguilar (IBM,

maguilar@us.ibm.com), Kerry Barnes (Gedae, Inc., kbarnes@gedae.com), James Steed (Gedae, Inc., jsteed@gedae.com)

Gedae, Inc., 1247 N. Church St., Suite 5, Moorestown, NJ 08057

IBM, 11501 Burnet Rd., Austin, TX 78758

Introduction

The age of multicore processors has made the

decomposition of large data sets and distribution of that

data through hierarchical memory structures a key hurdle in

both program efficiency and programmer productivity.

Single cores often have limited local storage. For example,

the current implementation of the Cell Broadband Engine

(Cell/B.E.) processor combines one Power Processing

Element (PPE) with 8 identical Synergistic Processing

Elements (SPE). Each SPE contains a high-speed SIMD

processor with its own 256 kB local store (LS) and DMA

engine as shown in Figure 1. Larger system memory is

available via a memory controller with a bandwidth of 25.6

GB/s – much less than the high speed Element Interconnect

Bus (EIB). These issues are not unique to the Cell

processor; software cache management on Intel Core 2

processors, shared memory management on embedded DSP

boards, and management of other modern memory

structures require programmer skill and time to produce

efficient applications.

Figure 1 – The current Cell/B.E. Processor combines a PPE

core with 8 SPE cores, all interconnected via a high-speed bus.

Previously, the Gedae programming language has been

used to benchmark the Cell/B.E. platform for several key

applications, including matrix multiplication and both the

polar format algorithm (PFA) and convolution

backprojection (CBP) methods of synthetic aperture radar

(SAR) image processing. To optimally use the hierarchical

memory of the Cell/B.E. architecture, complex flow graphs

were created. These flow graphs achieved efficiencies at or

above hand-coded benchmarks for the architecture, but the

complexity of the programs was not substantially better

than the hand-coded versions. Several ad hoc programming

constructs were utilized to efficiently use the hardware,

including the decomposition and distribution of the data

sets and the multibuffering of the communication between

system memory and SPE LS. This presentation will discuss

additions to the Gedae language which automate the

decomposition, communication, and multibuffering of large

data sets. Through the specification of token

decomposition and mapping of token parts to memory

partitions, the Gedae compiler autocodes the

implementation, inserts efficiency considerations such as

use of DMA and multibuffering, protects against pointer

misuse, and provides readability, maintainability, and

portability of the algorithm design. The three benchmarks

have been reimplemented using the new capability, and the

focus of the discussion will be illustrating how the

benchmarks utilize the features and demonstrating the

automated implementation still achieves the highest levels

of performance.

Matrix Multiplication Algorithm

The matrix multiply’s core operation is a multiply-add

which lends itself well to the SPE’s VMX SIMD instruction

set. Also, the operation can be easily decomposed into tiles

that fit inside the SPEs’ limited local storage. To perform a

parallel matrix multiply, we tile the matrices and multiply a

row of tiles from the first matrix with a column of tiles from

the second matrix, accumulating the results, i.e.,

out[p,i1,i2][j1,j2] += [p]a[i2][k2](i1,k1) * b[k2][j2](j1,k1)

where the parentheses notation indicates temporal

distribution, the square brace preindex indicates spatial

distribution, and the square brace postindex indicates

normal array indices.

A key issue in implementing this benchmark is overlapping

the communication with the processing. A general matrix

multiply accumulate kernel (equivalent to BLAS’ GEMM

operation) is the workhorse of the tiled algorithm, and if the

developer can fetch the next tiles to process while the

GEMM operation is processing the current tiles, the

algorithm can achieve close to the highest FLOP count for

the hardware. The theoretical maximum performance of a

single Cell/B.E. chip is 204.8 GFLOPS, and the Gedae

implementation of this algorithm can maintain a rate of

95% of that peak theoretical rate using a block data layout

and 84% using a normal data layout.

To tile the matrices in this algorithm, we introduce tiled

data streams to the language. A non-tiled R-by-C matrix

stream is declared as

stream datatype in[R][C];

We extend this declaration to include an optional tile size

Rt-by-Ct,

stream datatype in[Rt:R][Ct:C];

where the memory region is defined by the R and C

variables but the token is defined by the Rt and Ct

variables. The pointer “in” is the address of the first

element of the tile, inside the R-by-C region. The i
th

 row of

the tile can be accessed by adding i*C to the pointer.

Using this new syntax, new partitioning and concatenation

kernels are available to partition matrices spatiallyand

temporally, which can be generated and inserted into the

application automatically based on the developer’s

decomposition of the data set. While 2-d partitioning can

be done with this syntax, we have chosen to implement this

benchmark using a nested partitioning, partitioning the left-

hand matrix first row-wise and then column-wise and

partitioning the right-hand matrix first column-wise and

then row-wise. The temporal partitioning is shown in

Figure 2 and the temporal concatenation in Figure 3.

Figure 2 – Form the temporal partitioning and iteration

required to implement a tiled matrix multiply.

To perform the partitioning and concatenation kernels

inplace (without memory copies), pointers are manipulated.

The partitioning kernel is straightforward; an input token

arrives, and pointers to submatrices are sent downstream.

The concatenation kernel requires extra care by the

compiler’s scheduling algorithm. Pointers are fanning-in to

form a larger output token; thus, the concatenation kernel

must provide submatrix pointers to the upstream kernels.

With this pointer manipulation and tiling syntax, the

algorithm can be written using 10 kernels, none of which

contains more than 10 lines of code in its Apply method.

Figure 3 – Form the temporal concatenation of the matrix

products.

Synthetic Aperture Radar Algorithm

The PFA SAR algorithm has two key stages: the range

processing of the rows of the matrix and the azimuth

processing of the columns of the matrix. To distribute the

SAR algorithm we must add three stages: the partitioning of

the data to distribute the rows across the processors, a

corner turn of the data (distributed matrix transpose) to

transition between range and azimuth processing, and the

concatenation of the column-based results. In real-world

applications, we must also do additional preprocessing to

unpack error check the data. The Gedae implementation of

this distributed algorithm achieves over 88 GFLOPs on 8

SPEs, sustaining a rate of 18.4 GB/s to multibank system

memory, which acts as a bottleneck to the FLOP rate.

Figure 4 – Corner-turn with adjoin implemented with tiling.

The range, corner-turn with adjoin, and azimuth phases of

the algorithm can each be easily written using the tiling

notation. The corner-turn with adjoin phase is shown in

Figure 4. Each SPE will transpose 1/N
th

 of the rows of the

matrix. The spatial partitioning and concatenation kernels

are used to distribute the work to “p” processors,

partitioning row-wise and concatenating column-wise. The

transpose subgraph further tiles the data for use on the SPE,

partitioning the data in both dimensions. The entire PFA

application uses 20 kernels, each with no more than 10 lines

of Apply method code.

The CBJ SAR algorithm is also presented. The CBJ

algorithm decomposes into tiles, as shown in Figure 5,

although the decomposition must be arranged carefully to

minimize DMA accesses over the memory controller.

Figure 5 – Backprojection can be decomposed such that only

one tile is processed at a time.

References

[1] IBM, Sony Computer Entertainment, Toshiba. Cell

Broadband Engine Programming Handbook, Version 1.1,

April 2007. <http://www.ibm.com>.

[2] D. Hackenberg, “Fast matrix multiplication on Cell (SMP)

systems,” July 2007

<http://www.cellperformance.com/articles/2007/07/fast_matr

ix_multiplication_on.html>.

[3] W. Lundgren, et al., “Programming Examples That Expose

Efficiency Issues for the Cell Broadband Engine

Architecture,” HPEC Conference, September 2007.

[4] W. Lundgren, et al., “Implementing SAR Image Processing

Using Backprojection on the Cell Broadband Engine,” IEEE

Radar Conference, May 2008.

Portion of

the pulse

required for

this tile

A tile of

image that
fits into

memory

