
CrossCheck: Improving System Confidence through
High-Speed Dynamic Property Checking

Jonathan Springer, James Ezick, David Wohlford Matthew Craven, Rick Buskens
 Reservoir Labs, Inc. Lockheed Martin
 {springer, ezick, wohlford}@reservoir.com {matthew.craven, rick.buskens}@lmco.com

Summary1
Increasingly, the time to deploy a complex system is being
dominated by the complexities of generating, managing,
reasoning about, and ultimately validating immense
amounts of information. Lengthy prose specifications
impose high-level constraints which may transcend
reasoning about a single component. Components
developed in isolation, to shifting design requirements,
must interoperate. Rigorous validation requirements, such
as those for avionics imposed by RTCA/DO-178B, mandate
documented proof of comprehensive test coverage. Even
after deployment, there remains a need for logging and
analysis of nominal use and the ability to maintain system
confidence through random failures and variable
environmental factors.

To address these needs, we have developed the
CrossCheck™ system for dynamic property checking and
recovery. CrossCheck has two key assets:

1. CrossCheck abstracts the checking problem:
Specification patterns are defined in terms of abstract
“events” which are programmer-specified blocks of
structured data. CrossCheck is not tied to any particular
transmission medium but rather, through the
implementation of a simple interface, can accept event
streams from any source, for example via DDS [1].

2. CrossCheck provides high-speed and high-
throughput checking: The technology behind the
CrossCheck checking engine is motivated by
algorithms from modern network intrusion detection
appliances. Complex operations can be expressed in
ANSI C and compiled to native code rather than being
interpreted. The structure of the specification language
makes it possible to avoid constructing state-machines
that are exponential in the size of the property being
checked.

We have a development implementation that includes the
checking engine and a compiler for the CrossCheck
Specification Language (CSL). CSL specifications are
hierarchical and include native code handlers for hooks
generated by the checking engine at events such as
successful expression matching and rule-initiated recovery.
Our development system also includes a collection of
event-generation drivers that have allowed us to experiment
with a range of applications.

Application Domains
CrossCheck is a general-purpose dynamic checking system
applicable to a wide range of application domains. The

This work was supported by Air Force Research Lab, under Phase II SBIR
contract FA8750-07-C-0049.

principal requirement for applying CrossCheck to an
application (whether a program, a control system, or other
similar item) is that it be amenable to formulation of high-
level properties expressed in terms of event abstractions.
CrossCheck is principally useful when applied to such
systems whose operation is too complex to be fully
characterized statically.

Scenarios CrossCheck was developed to address include:

Online Verification of a Flight Control System

Components such as navigation units (e.g. an Embedded
GPS/Inertial (EGI) navigation system), onboard sensors,
and mission planning units may emit streams of data that
can be marshaled into CrossCheck events. Specifications
can be written to enforce rules from basic safety properties
to complex mission sequencing requirements.

Systems Integration Checking

Open architecture frameworks such as the Software
Communications Architecture (SCA) used by JTRS [2] for
developing software radio products and software libraries
such as VSIPL used by signal processing developers define
contracts on usage and interoperability between
components. CrossCheck can enforce these contracts by
monitoring at the boundary between interacting
components.

Fault Injection for Automated Coverage Testing

CrossCheck supports event feedback to the system being
checked when a rule is matched. Specifications can track
system progress, allowing specific conditions to trigger
targeted modification of the system environment. Scripts of
these modifications can facilitate coverage documentation
of rare cases or direct injection of faults to test behavior.

Checking of Automated Planning Systems

Autonomous systems often rely on opaque and highly
complex systems to achieve sophisticated behavior. For
these systems, static analysis is typically not possible. An
independent, dynamic checking framework can be
invaluable as a safeguard in these cases, especially when
the cost of failure is high. We have experimented with the
cognitive application framework Soar [3].

Deep Network Protocol Inspection

Sophisticated attacks may subvert the implementation of
transport-level or application-level protocols. Traditional
signature matching techniques are inadequate in these
cases, but by relating protocol states to CrossCheck events,
protocol misuse can be detected. CSL can express advanced
protocol specification languages such as binpac [4].

CrossCheck Architecture
A complete CrossCheck use case consists of the
CrossCheck runtime and compiled specification together
with an event generating application (Figure 1). The
CrossCheck user defines a set of events relevant to the
application domain and a specification for their behavior.

Figure 1: CrossCheck System Diagram

Runtime Checking System
Our algorithm for checking is based on rendering much of
the specification as C code whose execution is initiated by
an abstract machine processing CSL operators. Our CSL
compiler performs this transformation and links the
generated C code against a runtime library to produce a
specialized, fully-compiled checking engine, accepting a
stream of events from the application and reporting
property violations. This approach maximizes performance
and provides good platform portability with a low footprint.

On receiving an event, the checking engine determines the
set of applicable rules and orders their evaluation according
to a partial order that can be stated in the specification. Rule
match states are advanced, with new independent match
lines being forked and dead lines involving match failure
being deleted. Each line maintains its own variable bindings
supporting robust rule templates. A rule match initiates a
“recovery” operation that may or may not modify the
current event. Modification rolls back the checking state to
the beginning of the first applicable rule. This iteration
continues until all the event “falls through” all of the
applicable rules and is emitted for logging or return to the
system under check.

CrossCheck Specification Language
Specifications are written in the CrossCheck Specification
Language (CSL). CSL is a general-purpose specification
language based on the theory of nondeterministic context-
free languages, extended with the ability to refer to arbitrary
functions in key places. Specifications are described in
terms of hierarchical productions, which retain the flavor of
the traditional representation of context-free languages.
These productions operate over the stream of events coming
from an event source (e.g. the system under check). For
expressivity, CSL productions support bounded Kleene
operators and propositional connectives inspired by familiar
regular expression syntax. The use of regular expression-
style operators facilitates efficient execution for simple
patterns, while the ability to refer to general-purpose code
gives flexibility to implement very general context-sensitive
matching that can include deep reasoning and analysis.

Key to the versatility of CrossCheck is the interplay
between CSL and the checking engine. The engine provides
facilities such as simple transactional data storage that can
be used to hold global data. These facilities are exposed to
CSL rules through an API that can be called from the
compiled code fragments. In turn, the checking engine has
hooks at various processing points to which CSL defined
handlers can be attached. These hooks allow the checking
problem to be abstracted while the runtime provides
facilities that make powerful specifications easy to write.

Example from Sensor Processing
In a flight control scenario, it may be desirable to report any
situation in which acceleration exceeds some maximum
force extending over a given period of time. The system
under check in this case is assumed to have a navigation
sensor that reports acceleration force at regular intervals.

A partial CSL specification is given in Figure 2. This
specification defines an event format that includes
acceleration readings in three dimensions. These values
would be intercepted by CrossCheck when transmitted over
the on-board messaging bus. (The CrossCheck runtime
supports TCP/IP natively.) A series of predicates detect
acceleration that exceeds a specified maximum in any one
of these dimensions. The AccelHigh predicate checks that
such acceleration is not maintained for too long (three time
steps in this case), using regular expression-style alternation
and iteration (bounded Kleene-star) operators.

Figure 2: High acceleration specification fragment

The predicate that detects high x-acceleration is shown; the
others are similar. Through the programming interface,
predicates can bind variables to values within the context of
a rule match so that down-stream predicates can check for a
matching instantiation. We are developing a library of
common rule fragments and predicate templates. More
complex forms can be written by hand or generated by tools
specialized for the application domain.

References
[1] http://portals.omg.org/dds

[2] https://jtel.spawar.navy.mil/

[3] J. Laird, A. Newell, and P. Rosenbloom, "Soar: An
Architecture for General Intelligence," In Artificial
Intelligence, v. 33, p. 1-64, 1987.

[4] R. Pang, V. Paxson, R. Sommer, and L. Peterson, "binpac: A
yacc for Writing Application Protocol Parsers," in Internet
Measurement Conference, USENIX, Oct. 25-27, 2006.

