
Parallelizing QR Decompositions with the R-Stream

Compiler

Allen Leung, Nicolas Vasilache, Benôıt Meister, Richard Lethin

Reservoir Labs

May 22, 2008

1 Introduction

Rapid performance of the QR decomposition on in-
coming data matrices is a key computational element
in building Square-Root RLS linear adaptive filters,
a component in many advanced embedded sensor
systems (radar, etc) [Hay02]. While efficient sys-
tolic implementations of QR decomposition based on
Givens rotations have been known for close to two
decades, reported implementations are still mostly
hand crafted affairs [SBM00, RSVN01, NHE+05]. In
our efforts to develop technologies for programming
high performance embedded computers, we have re-
cently been experimenting with the automatic paral-
lelization of QR decomposition algorithms with the
R-Stream compiler [LLM+08]. In this paper we
show how our compiler can automatically extract
parallelism suitable for a variety of emerging com-
putational platforms (accelerators, FPGA, multicore,
etc.) from a single sequential QR implementation.

2 Givens QR

We start with a sequential implementation of QR de-
composition using Givens rotations :

for (int k = 0; k < N-1; k++)

for (int i = N-2; i >= k; i--)

float a = A[i][k];

float b = A[i+1][k];

float d=sqrt(a*a+b*b), c=a/d, s=-b/d;

for (j = k; j < N; j++)

float t1 = A[i][j]*c + A[i+1][j]*s;

float t2 = A[i+1][j]*c - A[i][j]*s;

A[i][j] = t1;

A[i+1][j] = t2;

The parallelization steps are as follows. The R-
Stream compiler first normalizes the above loop nests
and puts it in an internal polyhedral form where all
dependencies are expressed as polyhedral constraints
(the indicators <, > and <> specify whether a variable
is read-only, write-only or read/write). Since the loop
nests involve only affine indexing functions and affine
loop bounds, R-Stream can encode the dependencies
precisely, without approximations.

In the example below, the original code has been
converted and the statement S0 reads array value
A[1023-j,i] and writes the internal variable v1 that
corresponds to variable ’a’ in the original program.
S3 results from the aggregation by R-Stream into a
single statement of all the 4 statements originally be-
low loop j. Also when pretty-printing its output, R-
Stream reindexes the loops in the lexicographic order
i,j,k but this does no correspond to any transforma-
tion.

for (int i = 0; i <= 1022; i++)

for (int j = 0; j <= - i + 1022; j++)

S0(<A[1023-j,i], >_v1);

S1(<A[1022-j,i], >_v2);

S2(<_v1, <_v2, >_v3, >_v4);

for (int k = 0; k <= - i + 1023; k++)

S3(<>A[1022-j,i+k], <>A[1023-j,i+k],

<_v3, <_v4);

1



After performing scalar expansion to remove false
dependencies, we obtain the following loop nests
where variables v1, . . ., v4 (originally a, b, c, s)
have been expanded to bidimensional arrays:

for (int i = 0; i <= 1022; i++)

for (int j = 0; j <= - i + 1022; j++)

S0(<A[1023-j,i], >_v1[i,j]);

S1(<A[1022-j,i], >_v2[i,j]);

S2(<_v1[i,j], <_v2[i,j],

>_v3[i,j], >_v4[i,j]);

for (int k = 0; k <= - i + 1023; k++)

S3(<>A[1022-j,i+k], <>A[1023-j,i+k],

<_v3[i,j], <_v4[i,j]);

Our compiler computes a schedule which maxi-
mizes the amount of coarse-grained parallelism (both
synchronization-free and pipelined) while simultane-
ously maximizing the amount of possible reuse based
on locality. The search is performed in a unified man-
ner using a single integer linear program (ILP) over
the entire feasible space of schedules. In this example,
it finds a set of loop nests with two outer permutable
dimensions (i and j) and an inner vectorizable loop
(k). The two outermost permutable loops can then
be skewed and yield a pipelined parallel loop at the
second level.

for (int i = 0; i <= 1022; i++) // p=0

for (int j = i; j <= 1022; j++) // p=0

S0(<A[1023+i-j,i], >_v1[i,-i+j]);

S1(<A[1022+i-j,i], >_v2[i,-i+j]);

S2(<_v1[i,-i+j], <_v2[i,-i+j],

>_v3[i,-i+j], >_v4[i,-i+j]);

doall (int k = 0; k <= - i + 1023; k++)

S3(<>A[1022+i-j,i+k],

<>A[1023+i-j,i+k],

<_v3[i,-i+j], <_v4[i,-i+j]);

Depending on the specific architecture, more trans-
formations have to be applied in order to obtain a
target code that properly exploits the processing ele-
ments. For example, to target a distributed memory,
multicore architecture, blocking can be applied to the
permutable loop nest to form tasks that can be ex-
ecuted atomically without internal communication.
The block/task sizes are chosen so that (i) each task

can fit into the distributed memory of the processing
elements, and (ii) communication between tasks are
minimized. Tasks can be further scheduled to expose
task level parallelism. Bulk communications at the
boundary of the tasks can be grouped into DMA op-
erations, and these are overlapped with computations
via multi-buffering schemes. In the case of Givens
QR, we obtain a final mapping that executes as a
wave-front of coarse-grained tasks to exploit multiple
processors. Each such coarse-grained task can then
be subdivided by hierarchical tiling into local tasks
that would exploit potential multi-threading capabil-
ities and/or SIMD processing elements. A further
level of tiling can also allow us to create fine-grained
tasks whose operands fit the register file and unroll
to remove spurious instructions at the assembly level
taking advantage of register reuse.

Due to space constraints, the final output code has
been omitted.

3 Modified Gram-Schmidt QR

The next algorithm that we consider is an implemen-
tation of a modified Gram-Schmidt version of QR, as
shown below:

for (int k = 0; k < N; k++)

float nrm = 0;

for (int i = 0; i < M; i++)

nrm += A[i][k] * A[i][k];

R[k][k] = sqrt(nrm);

for (int i = 0; i < M; i++)

Q[i][k] = A[i][k] / R[k][k];

for (int j = k+1; j < N; j++)

R[k][j] = 0;

for (int i = 0; i < M; i++)

R[k][j] += Q[i][k] * A[i][j];

for (int i = 0; i < M; i++)

A[i][j] -= Q[i][k] * R[k][j];

After performing array expansion and scheduling,
our compiler obtains the following parallelized loop
nests. In this example, certain synchronization bar-
riers have been introduced between the inner paral-
lelized loop nests to ensure correctness. A more care-

2



ful look at the dependencies allows us to remove some
of the barriers which correspond to independent re-
gions that are equivalent to the OpenMP construct
#pragma omp parallel region. Eventually, the discus-
sion in the previous paragraph on hierarchical tiling
for tasks creation and locality optimization also ap-
plies here.

// prologue elided

for (int i = 0; i <= 1022; i++)

for (int j = 0; j <= 1023; j++)

S1(<A[j,i], <>nrm[i]); // reduction

S2(>R[i,i], <nrm[i]);

doall (int j = 0; j <= 1023; j++)

S3(<R[i,i], >Q[j,i], <A[j,i]);

// barrier

doall (int j = 0; j <= - i + 1022; j++)

for (int k = 0; k <= 1023; k++)

S5(<>R[i,1+i+j], <Q[k,i], <A[k,1+i+j]);

doall (int k = 0; k <= 1023; k++)

S6(<R[i,1+i+j], <>A[k,1+i+j], <Q[k,i]);

// barrier

// barrier

// epilogue elided

4 Conclusion

This paper shows how R-Stream automatically ex-
tracts parallelism from QR decomposition algo-
rithms. Our scheduler balances the extraction of
coarse-grained parallelism with reuse that can be uti-
lized downstream. Output from the scheduler can
be further rendered to a variety of execution models
and hardware execution engines (such as distributed
memory, bulk-communication, SIMD, shared mem-
ory, FPGA). This provides potential performance,
productivity, and portability benefits for embedded
signal processing codes. The results from the auto-
matic mapping procedure are along the lines of the
structures produced and used by domain experts in
hand mappings.

Note that these original algorithm expressions are
specifically lacking directives to indicate parallelism
or other physical mapping considerations (e.g., as in
OpenMP or with Parallel VSIPL++). A streaming
programming language (e.g., StreaMIT, Brook) is not

needed; it would probably be a lot of work to express
these algorithms in those languages at all, let alone
with the multiple dimensions of parallelism that lead
to efficient renderings on hardware. The compiler
can detect, shape, and tradeoff the physical consider-
ation automatically from C. Like the long forgotten
register annotation for variables in C, such physi-
cal mapping annotations for parallelism may actually
be obsolete thanks to better compiler technology. In
many cases, it can be worse; such physical mapping
information in the original algorithm expressions can
actually hamper the portability that can be obtained
from automatic mapping tools, because it imposes an
often insurmountable burden of undoing the physical
mapping that may (or may not) be good for one ar-
chitecture before the computation can be efficiently
mapped.

However, the mapping process does not alleviate
all the programming effort. Our mapper requires the
expression to be in a form that can be raised to the
polyhedral form. In the case of QR this is not bur-
densome; we find that textbook expressions of the
two relatively different algorithms for QR are nearly
exactly in this form.1. Furthermore, this expression
can be easily achieved using an existing language; a
new programming language is not needed.

We obtain the results from a general automatic
mapping procedure based on polyhedral representa-
tions; this result is not from a tool specific to the QR
algorithm itself (a sort of “fastest QR in the West”
tool analagous to FFTW). This tool works with other
algorithms, or on codes with QR expressiing in a
larger pipeline. We caution, though, that there is
still work to do to render FFT itself in the polyhe-
dral domain.

This suggests that the route to more portable code
libraries is through less specificity and higher levels
of abstraction, to enable the use of powerful emerging
automatic mapping technologies.

1Householder fits easily in the form too and is automatically

parallelisable; it is omitted here for space reasons, but will be

discussed during the workshop.

3



References

[Hay02] S. Haykin. Adaptive Filter Theory. Pren-
tice Hall, 2002.

[LLM+08] Richard Lethin, Allen Leung, Benôıt
Meister, Peter Szilagyi, Nicolas Vasilache,
and David Wohlford. Final report on the
the R-Stream 3.0 compiler. Technical re-
port, Reservoir Labs, Inc. Delivered to Air
Force Research Laboratory, Rome, NY for
Contract F03602-03-C-0033, May 2008.

[NHE+05] H. Nguyen, J. Haupt, M. Eskowitz,
B. Bekirov, J. Scalera, T. Anderson,
M. Vai, and K. Teitelbaum. High-
performance FPGA-based QR decompo-
sition. In HPEC, 2005.

[RSVN01] D. V. Rabinkin, W. Song, M. M. Vai, and
H. Nguyen. Adaptive array beamforming
with fixed-point arithmetic matrix inver-
sion using Givens rotations. In Proceed-

ings of SPIE, volume 4474, 2001.

[SBM00] W. S. Song, E. J. Baranoski, and D. R.
Martinez. One trillion operations per
second on-board VLSI signal processor
for Discoverer II space-based radar. In
Proceedings IEEE Aerospace Conference,
2000.

4


