Generating High-Performance General Size Linear Transform Libraries Using Spiral

Yevgen Voronenko

Franz Franchetti Frédéric de Mesmay Markus Püschel Carnegie Mellon University

This work was supported by DARPA DESA program, NSF-NGS/ITR, NSF-ACR, and Intel

The Problem: Example DFT

Discrete Fourier Transform (DFT) on 2xCore2Duo 3 GHz (single precision) Performance [Gflop/s]

- Standard desktop computer
- Same operations count ≈4nlog₂(n)
- Similar plots can be shown for all numerical problems

DFT Plot: Analysis

- High performance library development = nightmare
- Automation?

Idea: Textbook to Adaptive Library

Goal: Teach Computers to Write Libraries

Input:

- Transform:DFT_n
- Algorithm: $DFT_{km} \rightarrow (DFT_k \otimes I_m)T_m^{km}(I_k \otimes DFT_m)L_k^{km}$
- Hardware: 2-way SIMD + multithreaded

Spiral

Output:

- FFTW equivalent library
- For general input size
- Vectorized and multithreaded
- Performance competitive

Key technologies:

- Layered domain specific language
- Algorithm manipulation via rewriting
- Feedback-driven search

Result:

Full automation

Contribution: General Size Library

Fundamentally different problems

Beyond Fourier Transform and FFTW

Examples of Generated Libraries

Total: 300 KLOC / 13.3 MB of code generated in < 20 hours *from a few simple algorithm specs*

Intel IPP library 6.0 will include Spiral generated code

I. Background

- **II.** Library Generation
- **III.** Experimental Results
- **IV.** Conclusions and Future Work

Linear Transforms

Mathematically: matrix-vector product

10

Fast Algorithms, Example: 4-point FFT

- SPL = mathematical, declarative specification
- Space of algorithms generated using breakdown rules $DFT_{mn} \rightarrow (DFT_m \otimes I_n)D(I_m \otimes DFT_n)P$

Examples of Breakdown Rules

$$\begin{array}{c} \mathbf{DFT}_{n} \longrightarrow (\mathbf{DFT}_{k} \otimes I_{m}) D_{k,m} (I_{k} \otimes \mathbf{DFT}_{m}) L_{k}^{n} \\ \mathbf{DFT}_{n} \longrightarrow V_{m,k}^{-1} (\mathbf{DFT}_{k} \otimes I_{m}) (I_{k} \otimes \mathbf{DFT}_{m}) V_{m,k} \\ (2.2) \\ \mathbf{DFT}_{n} \longrightarrow W_{n}^{-1} (I_{1} \oplus \mathbf{DFT}_{n-1}) E_{n} (I_{1} \oplus \mathbf{DFT}_{n-1}) W_{n} \\ (2.3) \\ \mathbf{DFT}_{n} \longrightarrow B_{n,m}^{\top} D_{m} \mathbf{DFT}_{m} D'_{m} \mathbf{DFT}_{m} D''_{m} B_{n,m}, \quad m \geq 2n-1 \\ (2.4) \\ \mathbf{DFT}_{n} \longrightarrow P_{k/2,2m}^{\top} (\mathbf{DFT}_{2m} \oplus (I_{k/2-1} \otimes_{i} C_{2m} \mathbf{rDFT}_{2m} ((i+1)/k))) (\mathbf{RDFT}_{k}' \otimes I_{m}) \\ (2.5) \\ \end{array}$$

$$\begin{array}{c} \left| \begin{array}{c} \mathbf{RDFT}_{n} \\ \mathbf{PDTT}_{n} \\ \mathbf{DHT}_{n} \\ \mathbf{DHT}_{n}' \\ \mathbf{DH$$

"Teach" Spiral domain knowledge of algorithms. Never obsolete. Each rule leads to a library

I. Background

II. Library Generation

III. Experimental Results

IV. Conclusions and Future Work

How Library Generation Works

Breakdown Rules to Library Code

Cooley-Tukey Fast Fourier Transform (FFT)

$$\mathbf{DFT}_{km} x = (\mathbf{DFT}_k \otimes I_m) T_m^{km} (I_k \otimes \mathbf{DFT}_m) L_k^{km} x$$
$$\mathbf{DFT} = \begin{bmatrix} \mathbf{DFT}_k \otimes I_m \\ \mathbf{DFT} \end{bmatrix} \begin{bmatrix} \mathbf{FT}_k \otimes I_m \\ \mathbf{FT}_k \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{FT}_k \otimes I_m \\ \mathbf{FT}_k \end{bmatrix} \begin{bmatrix} \mathbf{FT}_k \otimes I_m \\ \mathbf{FT}_k \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{FT}_k \otimes I_m \\ \mathbf{FT}_k \end{bmatrix} \begin{bmatrix} \mathbf{FT}_k \otimes I_m \\ \mathbf{FT}_k \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{FT}_k$$

Naive implementation

```
void dft(int n, cplx X[], cplx Y[]) {
    k = choose_factor(n); m = n/k;
    Z = permute(X)
    for i=0 to k-1
        dft_subvec(m, Z, Y, ...)
    for i=0 to n-1
        Y[i] = Y[i]*T[i];
    for i=0 to m-1
        dft_strided(k, Y, Y, ...)
```

2 extra functions needed

Breakdown Rules to Library Code

Cooley-Tukey Fast Fourier Transform (FFT)

$$\mathbf{DFT}_{km} x = (\mathbf{DFT}_k \otimes I_m) T_m^{km} (I_k \otimes \mathbf{DFT}_m) L_k^{km} x$$

$$\mathbf{DFT} = \left[\begin{array}{c} \mathbf{DFT}_k \otimes I_m \\ \mathbf{DFT}_k \otimes I_m \end{array} \right] \left[\begin{array}{c} \mathbf{Stride} \\ \mathbf{$$

Naive implementation

```
void dft(int n, cplx X[], cplx Y[]) {
    k = choose_factor(n); m = n/k;
    Z = permute(X)
    for i=0 to k-1
        dft_subvec(m, Z, Y, ...)
    for i=0 to n-1
        Y[i] = Y[i]*T[i];
    for i=0 to m-1
        dft_strided(k, Y, Y, ...)
}
```

Optimized implementation

```
void dft(int n, cplx X[], cplx Y[]) {
    k = choose_factor(n); m = n/k;
```

```
for i=0 to k-1
   dft_strided2(m, X, Y, ...)
for i=0 to m-1
   dft_strided3_scaled(k, Y, Y, T, ...)
}
```

How to discover these specialized variants automatically?

Library Structure

 $\bigvee_{k,m}^T (\mathbf{DFT}_k \otimes \mathbf{I}_m) (\mathbf{I}_k \otimes \mathbf{DFT}_m) \vee_{k,m} \\ (\mathbf{DFT}_k \otimes \mathbf{I}_m) \top_m^{km} (\mathbf{I}_k \otimes \mathbf{DFT}_m) \sqcup_k^{km}$

Library Structure

Parallelization / Vectorization Recursion Step Closure

 \mathbf{DFT} $S_z \mathbf{DFT} G_h$ $S_h \mathbf{DFT} G_z$ $S_h \mathbf{DFT} \operatorname{diag} (\operatorname{Dat}) G_h$ $S_h \mathbf{DFT} G_h$ $S_h \mathbf{DFT} G_{h \circ z}$ $S_{h \circ z} \mathbf{DFT} G_h$ $S_h \mathbf{DFT} \operatorname{diag} (\operatorname{Dat}) G_{h \circ z}$ $S_z \mathbf{DFT} \operatorname{diag} (\operatorname{Dat}) G_h$ $S_{h \circ z} \mathbf{DFT} \operatorname{diag} (\operatorname{Dat}) G_h$

Input:

Breakdown rules

Output:

- Recursion step closure
- Σ-SPL Implementation of each recursion step

- Parallelization/Vectorization
 - Adds additional breakdown rules
 - Orthogonal to the closure generation

Computing Recursion Step Closure

- Input: transform T and a breakdown rule
- **Output:** spawned recursion steps + Σ-SPL implementation

5. Repeat until closure is reached

Parametrization (not shown) derives the independent parameter set 18 for each recursion step

Recursion Step Closure Examples

17 mutually recursive functions

Base Cases

Base cases are called "codelets" in FFTW

Why needed:

- Closure is converted into mutually recursive functions
- Recursion must be terminated
- Larger base cases eliminate overhead from recursion

How many:

- In FFTW 3.2: 183 codelets for complex DFT (21 types) 147 codelets for real DFT (18 types)
- In our generator: # codelet types ‰ # recursion steps

Obtained by using standard Spiral to generate fixed size code

 $\left\{ \mathsf{S}(h_{u_3,1}^{2 \to u_2}) \operatorname{DFT}_2 \mathsf{G}(h_{u_7,u_8}^{2 \to u_6}) \right\} \\ \left\{ \mathsf{S}(h_{u_3,1}^{3 \to u_2}) \operatorname{DFT}_3 \mathsf{G}(h_{u_7,u_8}^{3 \to u_6}) \right\}$

Library Implementation

 $\begin{array}{c} \mathbf{DFT} \\ \mathbf{S}_z \, \mathbf{DFT} \, \mathbf{G}_h \\ \mathbf{S}_h \, \mathbf{DFT} \, \mathbf{G}_z \\ \mathbf{S}_h \, \mathbf{DFT} \, \mathrm{diag} \, (\mathrm{Dat}) \, \mathbf{G}_h \\ \mathbf{S}_h \, \mathbf{DFT} \, \mathrm{G}_h \\ \mathbf{S}_h \, \mathbf{DFT} \, \mathbf{G}_{h \circ z} \\ \mathbf{S}_{h \circ z} \, \mathbf{DFT} \, \mathbf{G}_h \\ \mathbf{S}_h \, \mathbf{DFT} \, \mathrm{diag} \, (\mathrm{Dat}) \, \mathbf{G}_{h \circ z} \\ \mathbf{S}_z \, \mathbf{DFT} \, \mathrm{diag} \, (\mathrm{Dat}) \, \mathbf{G}_h \\ \mathbf{S}_{h \circ z} \, \mathbf{DFT} \, \mathrm{diag} \, (\mathrm{Dat}) \, \mathbf{G}_h \end{array}$

Input:

- Recursion step closure
- Σ-SPL implementation of each recursion step (base cases + recursions)

Output:

- High-performance library
- Target language: C++, Java, etc.

Process:

- Build library plan
- Perform hot/cold partitioning
- Generate target language code

High-performance library

I. Background

II. Library Generation

III. Experimental Results

IV. Conclusions and Future Work

Double Precision Performance: Intel Xeon 5160 2-way vectorization, up to 2 threads

23

FIR Filter Performance 2- and 4-way vectorization, up to 2 threads

24

2-D Transforms Performance 2- or 4-way vectorization, up to 2 threads

Performance [Gflop/s]

Performance [Gflop/s]

Customization: Code Size

Performance [Gflop/s]

Generated library JTransforms

16k 32k 64k

Generated

Naive

8k

2k

4k

Backend Customization: Java

Portable, but only 50% of scalar C performance

Summary

 Full automation: Textbook to adaptive library

Performance

- SIMD
- Multicore
- Customization

Industry collaboration

 Intel IPP 6.0 will include Spiral generated code

