
MIT Lincoln Laboratory

Language, Dialect, and Speaker Recognition
Using Gaussian Mixture Models on the Cell

Processor

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro,
Douglas Reynolds, and Jeremy Kepner

{nmalyska, smohindra, karen.lauro, reynolds, kepner}@ll.mit.edu

This work is sponsored by the United States Air Force under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

Presenter
Presentation Notes
This presentation describes the theory and algorithms for doing language, dialect, and speaker recognition using Gaussian mixture models on the Cell Processor.

MIT Lincoln Laboratory

Outline

• Introduction

• Recognition for speech applications using GMMs

• Parallel implementation of the GMM

• Performance model

• Conclusions and future work

Presenter
Presentation Notes
An outline of the presentation is given here. We will begin with an introduction and motivation and then describe the theory of recognition for speech applications. The next section will involve the implementation of the GMM on a parallel system. Finally, we will describe projected performance of this algorithm and end with conclusions and future work.

MIT Lincoln Laboratory

Introduction
Automatic Recognition Systems

• In this presentation, we will discuss technology that can be
applied to different kinds of recognition systems

– Language recognition
– Dialect recognition
– Speaker recognition

Who is the speaker?

What dialect are
they using?

What language are
they speaking?

Presenter
Presentation Notes
This presentation will discuss the underlying technology behind several types of machine recognition systems. These systems reveal information about a given talker including who they are, what language they are speaking, and what dialect they are using.

MIT Lincoln Laboratory

Introduction
The Scale Challenge

• Speech processing problems are often described as one person
interacting with a single computer system and receiving a
response

Presenter
Presentation Notes
Two major challenges face modern recognition systems. The first, the scale challenge, comes about because practical recognition systems often involve more that one person interacting with a single machine.

MIT Lincoln Laboratory

Introduction
The Scale Challenge

• Real speech applications, however, often involve data from
multiple talkers and use multiple networked multicore machines

– Interactive voice response systems
– Voice portals
– Large corpus evaluations with hundreds of hours of data

Information
About Speaker,

Dialect, or Language

Presenter
Presentation Notes
Instead, real applications involve data from multiple talkers processed over multiple networked multicore machines. Several common applications for such systems are interactive voice response systems, voice portals, and large-scale corpus evaluations.

MIT Lincoln Laboratory

Introduction
The Computational Challenge

• Speech-processing algorithms are computationally expensive

• Large amounts of data need to be available for these applications
– Must cache required data efficiently so that it is quickly available

• Algorithms must be parallelized to maximize throughput
– Conventional approaches focus on parallel solutions over multiple

networked computers
– Existing packages not optimized for high-performance-per-watt

machines with multiple cores, required in embedded systems with
power, thermal, and size constraints

– Want highly-responsive “real-time” systems in many applications,
including in embedded systems

Presenter
Presentation Notes
The second major challenge for recognition systems is the computational challenge. The algorithms they use are computationally expensive, require large amounts of quickly-available data, and must be parallelized for maximum throughput

MIT Lincoln Laboratory

Outline

• Introduction

• Recognition for speech applications using GMMs

• Parallel implementation of the GMM

• Performance model

• Conclusions and future work

Presenter
Presentation Notes
We will now discuss the theory behind recognition for speech applications using an approach called Gaussian Mixture Models (GMMs).

MIT Lincoln Laboratory

Recognition Systems
Summary

• A modern language, dialect, or speaker recognition system
is composed of two main stages

– Front-end processing
– Pattern recognition

• We will show how a speech signal is processed by modern
recognition systems

– Focus on a recognition technology called Gaussian mixture
models

Speech Front End Pattern
Recognition

Decision on the
identity, dialect,

or language of speaker

Presenter
Presentation Notes
There are two main stages in modern language, dialect, and speaker recognition systems, front-end processing and pattern recognition. In the next series of slides, we will follow a speech signal through a modern recognition system from the input signal to the final decision-making step.

MIT Lincoln Laboratory

Recognition Systems
Frame-Based Processing

• The first step in modern speech systems is to convert
incoming speech samples into frames

• A typical frame rate for a speech stream is 100 frames per
second

Speech FramesSpeech Samples

…

Frame NumberTime

Presenter
Presentation Notes
The first step in a modern speech-processing system is to convert a stream of speech samples into blocks of samples, known as frames. As we can see in the animation on this set of consecutive slides, the process of converting samples to frames involves taking neighboring groups of samples and stacking them into vectors. A typical frame rate for a speech stream is 100 frames per second.

MIT Lincoln Laboratory

Recognition Systems
Frame-Based Processing

• The first step in modern speech systems is to convert
incoming speech samples into frames

• A typical frame rate for a speech stream is 100 frames per
second

Speech FramesSpeech Samples

…

Frame NumberTime

Presenter
Presentation Notes
The first step in a modern speech-processing system is to convert a stream of speech samples into blocks of samples, known as frames. As we can see in the animation on this set of consecutive slides, the process of converting samples to frames involves taking neighboring groups of samples and stacking them into vectors. A typical frame rate for a speech stream is 100 frames per second.

MIT Lincoln Laboratory

Recognition Systems
Frame-Based Processing

• The first step in modern speech systems is to convert
incoming speech samples into frames

• A typical frame rate for a speech stream is 100 frames per
second

Speech FramesSpeech Samples

…

Frame NumberTime

Presenter
Presentation Notes
The first step in a modern speech-processing system is to convert a stream of speech samples into blocks of samples, known as frames. As we can see in the animation on this set of consecutive slides, the process of converting samples to frames involves taking neighboring groups of samples and stacking them into vectors. A typical frame rate for a speech stream is 100 frames per second.

MIT Lincoln Laboratory

Recognition Systems
Frame-Based Processing

• The first step in modern speech systems is to convert
incoming speech samples into frames

• A typical frame rate for a speech stream is 100 frames per
second

Speech FramesSpeech Samples

…

Frame NumberTime

Presenter
Presentation Notes
The first step in a modern speech-processing system is to convert a stream of speech samples into blocks of samples, known as frames. As we can see in the animation on this set of consecutive slides, the process of converting samples to frames involves taking neighboring groups of samples and stacking them into vectors. A typical frame rate for a speech stream is 100 frames per second.

MIT Lincoln Laboratory

Recognition Systems
Frame-Based Processing

• The first step in modern speech systems is to convert
incoming speech samples into frames

• A typical frame rate for a speech stream is 100 frames per
second

Speech Frames

Frame Number

Speech Samples

…

Time

Presenter
Presentation Notes
The first step in a modern speech-processing system is to convert a stream of speech samples into blocks of samples, known as frames. As we can see in the animation on this set of consecutive slides, the process of converting samples to frames involves taking neighboring groups of samples and stacking them into vectors. A typical frame rate for a speech stream is 100 frames per second.

MIT Lincoln Laboratory

Recognition Systems
Front-End Processing

• Front-end processing converts observed speech frames
into an alternative representation, features

– Lower dimensionality
– Carries information relevant to the problem

Speech Frames Feature Vectors

Front End

Frame Number Feature Number

1 2{ , , , }KX = x x x

1x 2x 3x 4x
Dim 2

Dim 1

Presenter
Presentation Notes
After being converted into frames, we perform front-end processing. This step converts each frame vector into an alternative representation called a feature. Features are a useful representation because they (1) lower the dimensionality of the frames and (2) carry information specifically relevant to the problem, for example speaker, dialect, or language information.

MIT Lincoln Laboratory

Recognition Systems
Pattern Recognition Training

• A recognition system makes
decisions about observed
data based on a knowledge of
past data

• During training, the system
learns about the data it uses
to make decisions

– A set of features are
collected from a certain
language, dialect, or
speaker

Training Features

1x 2x 3x 4x
Dim 2

Dim 1

Presenter
Presentation Notes
After obtaining features, the next step is the pattern recognition stage. Pattern recognition is essentially the process of teaching a machine to make a decision about new data based on knowledge of past data. The machine learns about the data during a procedure called training. We begin with a set of training features collected from a certain language, dialect, or speaker.

MIT Lincoln Laboratory

Recognition Systems
Pattern Recognition Training

• A recognition system makes
decisions about observed
data based on a knowledge of
past data

• During training, the system
learns about the data it uses
to make decisions

– A set of features are
collected from a certain
language, dialect, or
speaker

– A model is generated to
represent the data

Training Features

Dim 1Dim 2

Dim 1Dim 2

Model

1x
2x

()p x

Presenter
Presentation Notes
A model is then generated from these features. As an example, we can see here the data modeled with a single Gaussian distribution.

MIT Lincoln Laboratory

Recognition Systems
Gaussian Mixture Models

• A Gaussian mixture model
(GMM) represents features as
the weighted sum of multiple
Gaussian distributions

• Each Gaussian state i has a
– Mean
– Covariance
– Weight

Dim 1Dim 2

iμ

iΣ

iw

Model λ

(|)p λx

Presenter
Presentation Notes
In modern recognition systems, it is typical to model the data as a weighted sum of multiple Gaussian distributions, each having a mean, covariance, and weight.

MIT Lincoln Laboratory

Recognition Systems
Gaussian Mixture Models

Parameters iμ

iΣ

iw

Dim 1Dim 2

()p x

Presenter
Presentation Notes
Each Gaussian of the sum is represented by a parameter vector, as shown.

MIT Lincoln Laboratory

Recognition Systems
Gaussian Mixture Models

Model States

Parameters

Dim 1Dim 2

()p x

Presenter
Presentation Notes
An entire GMM is represented by a matrix, having a parameter vector for each model state.

MIT Lincoln Laboratory

Recognition Systems
Language, Speaker, and Dialect Models

Model States

Languages,
Dialects,

or Speakers

Parameters

1Model λ

2Model λ

3Model λ

(|)Cp λx

Dim 1Dim 2

In LID, DID, and SID,
we train a set of target models

for each dialect, language, or speaker
Cλ

Presenter
Presentation Notes
Using the GMMs that we have described, modern recognition systems store models for each language, dialect, or speaker of interest. These are called the target models.

MIT Lincoln Laboratory

Recognition Systems
Universal Background Model

Model States

Parameters
(|)Cp λx

We also train a universal background
model representing all speechCλ

Model Cλ

Dim 1Dim 2

Presenter
Presentation Notes
It is also conventional to create a model called the universal background model, representing the universe of all speech. This model is typically trained on a wide variety of training data representing the scope of the languages, dialects, or speakers that are possible.

MIT Lincoln Laboratory

Recognition Systems
Hypothesis Test

• Given a set of test
observations, we perform a
hypothesis test to determine
whether a certain class
produced it

0

1

: is from the hypothesized class
: is not from the hypothesized class

test

test

H X
H X

1 2{ , , , }test KX = x x x

Dim 1Dim 2

Presenter
Presentation Notes
Armed with the target and background models, the process of performing recognition become a hypothesis test. In this test, we ask whether a set of observed data more likely represents a hypothesized language, dialect, or speaker, or instead some other class.

MIT Lincoln Laboratory

Recognition Systems
Hypothesis Test

• Given a set of test
observations, we perform a
hypothesis test to determine
whether a certain class
produced it

0

1

: is from the hypothesized class
: is not from the hypothesized class

test

test

H X
H X

1 2{ , , , }test KX = x x x

0 ?H

1 ?H

1(|)p λx

(|)Cp λx

Dim 1Dim 2

Dim 1Dim 2

Dim 1Dim 2

Presenter
Presentation Notes
As shown, this test is performed by considering the likelihood that a set of observed features was produced by a certain target model versus the probability that it comes for the universal background model.

MIT Lincoln Laboratory

Recognition Systems
Hypothesis Test

• Given a set of test
observations, we perform a
hypothesis test to determine
whether a certain class
produced it

1 2{ , , , }test KX = x x x

1(|)p λx

(|)Cp λx

Dim 1Dim 2

Dim 1Dim 2

Dim 1Dim 2

English?

Not English?

Presenter
Presentation Notes
As shown, this test is performed by considering the likelihood that a set of observed features was produced by a certain target model versus the probability that it comes for the universal background model.

MIT Lincoln Laboratory

Recognition Systems
Log-Likelihood Ratio Score

• We determine which hypothesis is true using the ratio:

• We use the log-likelihood ratio score to decide whether an
observed speaker, language, or dialect is the target

() log[(|)] log[(|)]C CX p X p Xλ λΛ = −

threshold, generated by
()

threshold, generated by
C

C

X
X

X
λ
λ

≥⎧
Λ ⎨<⎩

00

01

threshold, accept (|)
threshold, reject (|)

Hp X H
Hp X H

≥⎧
⎨≤⎩

Presenter
Presentation Notes
We can write this test as a ratio. It is typical to take the logarithm of this ratio resulting in the log-likelihood ratio score.

MIT Lincoln Laboratory

Recognition Systems
Log-Likelihood Computation

• The observation log-likelihood given a model is:λ

(|)p λx

Dim 1Dim 2 Dim 1Dim 2

log[(|)]?p X λ

Presenter
Presentation Notes
To compute each log-likelihood, we perform the computational steps animated in this set of slides. The process involves taking a dot product and adding a constant value for each state, followed by a series of table lookups and a sum.

MIT Lincoln Laboratory

Recognition Systems
Log-Likelihood Computation

• The observation log-likelihood given a model is:

()11 1
2

1 1

log[(|)] log exp () ()
K M

T
i i i iK

i

p X Cλ −

=

⎛ ⎞
= − − Σ −⎜ ⎟

⎝ ⎠
∑ ∑ x μ x μ

Dot product

(|)p λx

Dim 1Dim 2 Dim 1Dim 2

log[(|)]?p X λ

λ

Presenter
Presentation Notes
To compute each log-likelihood, we perform the computational steps animated in this set of slides. The process involves taking a dot product and adding a constant value for each state, followed by a series of table lookups and a sum.

MIT Lincoln Laboratory

Recognition Systems
Log-Likelihood Computation

• The observation log-likelihood given a model is:

()11 1
2

1 1

log[(|)] log exp () ()
K M

T
i i i iK

i

p X Cλ −

=

⎛ ⎞
= − − Σ −⎜ ⎟

⎝ ⎠
∑ ∑ x μ x μ

(|)p λx

Dim 1Dim 2 Dim 1Dim 2

log[(|)]?p X λ

Constant derived from
weight and covariance

λ

Presenter
Presentation Notes
To compute each log-likelihood, we perform the computational steps animated in this set of slides. The process involves taking a dot product and adding a constant value for each state, followed by a series of table lookups and a sum.

MIT Lincoln Laboratory

Recognition Systems
Log-Likelihood Computation

• The observation log-likelihood given a model is:

()11 1
2

1 1

log[(|)] log exp () ()
K M

T
i i i iK

i

p X Cλ −

=

⎛ ⎞
= − − Σ −⎜ ⎟

⎝ ⎠
∑ ∑ x μ x μ

(|)p λx

Dim 1Dim 2 Dim 1Dim 2

log[(|)]?p X λ

Table lookup used to
compute this function

λ

Presenter
Presentation Notes
To compute each log-likelihood, we perform the computational steps animated in this set of slides. The process involves taking a dot product and adding a constant value for each state, followed by a series of table lookups and a sum.

MIT Lincoln Laboratory

Recognition Systems
Log-Likelihood Computation

• The observation log-likelihood given a model is:

()11 1
2

1 1

log[(|)] log exp () ()
K M

T
i i i iK

i

p X Cλ −

=

⎛ ⎞
= − − Σ −⎜ ⎟

⎝ ⎠
∑ ∑ x μ x μ

(|)p λx

Dim 1Dim 2 Dim 1Dim 2

log[(|)]?p X λ

Sum over all K features

λ

Presenter
Presentation Notes
To compute each log-likelihood, we perform the computational steps animated in this set of slides. The process involves taking a dot product and adding a constant value for each state, followed by a series of table lookups and a sum.

MIT Lincoln Laboratory

Outline

• Introduction

• Recognition for speech applications using GMMs

• Parallel implementation of the GMM

• Performance model

• Conclusions and future work

Presenter
Presentation Notes
We will now describe a parallel implementation of GMM-scoring process on the Cell processor.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Summary

• We have developed an algorithm to perform GMM scoring
on the Cell processor

• This scoring stage of pattern recognition is where much of
the time is spent in current systems

• This section:
– Describes the Cell Broadband Engine architecture
– Summarizes the strengths and limitations of the Cell
– Discusses step-by-step the algorithm we developed for GMM

scoring on the Cell

Presenter
Presentation Notes
We have developed technique by which to perform the GMM scoring algorithm on the Cell processor. This scoring stage is where much of the time is spent in current systems. Often, the target and background models are trained offline once, where scoring is performed online with each new set of observations. In this section, we will briefly describe a multicore microprocessor called the Cell Broadband Engine, summarize the strengths and limitations of the Cell, and discuss the algorithm we developed for the Cell architecture.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Cell Architecture

• The Cell Broadband Engine has
leading performance-per-watt
specifications in its class

• Synergistic processing elements
(SPEs)

– 256KB of local store memory
– 25.6 GFLOPs per SPE
– SIMD instructions

• PowerPC processor element
(PPE)

• PPE and multiple SPEs operate in
parallel and communicate via a
high-speed bus

– 12.8e9 bytes/second (one way)

• Each SPE can transfer data from
main memory using DMA

– PPE can effectively “send” data
to the SPEs using this method

PPESPE 0 SPE N

Main Memory

High-Speed Bus

Presenter
Presentation Notes
The Cell processor consists of four main components—one PPE, many SPEs, a high-speed bus, and a bank of main memory. For simplicity, we have reduced the relatively complex details of the chip to the simple block diagram shown.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Cell Design Principles

• Limitations of the Cell processor
– Size of local store is small—only 256KB
– All SPE data must explicitly be transferred in and out of local

store
– The PPE is much slower than the SPEs

• Solutions to maximize throughput
– Do computations on SPEs when possible
– Minimize time when SPEs are idle
– Keep commonly-used data on SPEs to avoid cost of

transferring to local store

Presenter
Presentation Notes
The Cell processor has fast processing elements and a fast bus, which are a strong advantage. The main challenges of the Cell are to (1) divide a given problem so as to keep the SPEs busy and (2) keep the SPEs fed with data to process.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm: Background Scoring

• Begin with a background
model and a single feature
vector

1x

(|)Cp λx

Dim 1Dim 2

On PPE

On PPE

Presenter
Presentation Notes
To address these issues, we have developed an algorithm that splits tasks efficiently among the SPEs and that is able to minimize the amount of transfer necessary between the SPEs and main memory. In this slide, we see that we begin the process with background scoring. The background model and a single feature vector are present of the PPE side.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm Step 1

• Broadcast the background
model to the SPEs

– 616K model is split across
SPEs since it will not fit on
single SPE

– Kept on SPEs throughout
scoring procedure

To SPE 0(|)Cp λx

Dim 1Dim 2

To SPE 7

Presenter
Presentation Notes
The first step of the algorithm is to distribute the background model to the SPEs. Since a background model is too large to fit on a single SPE, the states of the model are divided across them as shown. This transfer is done only once during the entire feature-vector scoring process.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm Step 2

• Broadcast copy of the feature
vector to the SPEs

x

To SPE 0
…

To SPE 7

Presenter
Presentation Notes
The next step is to broadcast a copy of the feature vector to each of the SPEs.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm Step 3

• Score the feature vector
against the background
model states on each SPE

0log[(|)]Cp λx
SPE 0

SPE 7

7log[(|)]Cp λx

x

Presenter
Presentation Notes
Step 3 involves scoring the feature vector against the background states that are on each SPE. This yields a set of partial log-likelihood scores which will be combined in the next step.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm Step 4

• Move the background scores
to the PPE and aggregate

0log[(|)]Cp λx 7log[(|)]Cp λx
On SPEs

On PPE

()
7

0
log[(|)] log exp log[(|)]C Cr

r
p pλ λ

=

= ∑x x

Presenter
Presentation Notes
In step 4, the results of background scoring on the SPEs are returned to the PPE and aggregated as shown. This results in a log-likelihood score for the background model.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm: Target Scoring

• Begin with a target model and
keep the single feature vector
on the SPEs

x

(|)Cp λx

Dim 1Dim 2

On SPEs

On PPE

Presenter
Presentation Notes
With background scoring completed, target (language, dialect, or speaker) model scoring begins. The target model of interest is on the PPE, and the feature vector being scored remains on each of the SPEs.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm Step 5

• Distribute target model states
to the SPEs

– Only a subset of states need
to be scored (called
Gaussian short-lists)

(|)Cp λx

Dim 1Dim 2

To SPE 0

To SPE 7

Presenter
Presentation Notes
We now distribute the states of the target model to the SPEs. Using a procedure called Gaussian short-lists (details are beyond the scope of this presentation), we are able to select and send only a small subset of the total number of target states.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm Step 6

• Score feature vectors against
target models

0log[(|)]Cp λx
SPE 0

SPE 7

7log[(|)]Cp λx

x

Presenter
Presentation Notes
In Step 6, we score the feature vector against the target states on each SPE, resulting in partial log-likelihood scores.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Algorithm Step 7

• Collect target scores from
SPEs and aggregate

0log[(|)]Cp λx 7log[(|)]Cp λx

On SPEs

On PPE

()
7

0
log[(|)] log exp log[(|)]C Cr

r
p pλ λ

=

= ∑x x

Presenter
Presentation Notes
These partial scores are sent to the PPE and aggregated as shown.

MIT Lincoln Laboratory

Parallel Implementation of the GMM
Implementation Challenges

• We have begun implementing our algorithm on the Cell
processor

• Implementing vectorization is a challenge
– Concentrate on optimizing dot product and aggregation

algorithms

• Designing data transfers is another challenging problem
– Subdividing and distributing the models to minimize transfer

time
– Timing transfers so that they overlap with computation

(double buffering)

()11 1
2

1 1

log[(|)] log exp () ()
K M

T
i i i iK

i

p X Cλ −

=

⎛ ⎞
= − − Σ −⎜ ⎟

⎝ ⎠
∑ ∑ x μ x μ

Presenter
Presentation Notes
Implementation of the algorithm we have described has begun. Two main challenges in this process have been (1) designing the direct-memory access transfers from main memory to the SPEs so that they are efficient and (2) optimizing the performance of the dot product and look-up-table-based accumulation function with SIMD processing.

MIT Lincoln Laboratory

Outline

• Introduction

• Recognition for speech applications using GMMs

• Parallel implementation of the GMM

• Performance model

• Conclusions and future work

Presenter
Presentation Notes
We will now describe a model of the algorithm we have described as well as the results of performance simulations.

MIT Lincoln Laboratory

Performance Model
Cell Resources

PPESPE 0 SPE N

Main Memory

High-Speed Bus

8 SPEs used
(25.6 GFLOPs each)

12.8e9 bytes per sec

Presenter
Presentation Notes
This figure depicts the Cell-processor resources assumed in our model. During the performance simulations, we will show the effects of variations of the computational and communication efficiencies.

MIT Lincoln Laboratory

Performance Model
Data Structures

Model States (2048)

Targets (10)

Parameters (77)
Feature Vectors

1 2{ , , , }KX = x x x

1x 2x 3x 4x Universal Background Model

Target Models

Parameters (77)

Model States (2048)

38 Dimensional

100 Features per Second
For Each Stream

Presenter
Presentation Notes
The data structures used in the model are detailed here. These values are typical for the automatic speaker, language, and dialect-recognition domains. Each slide of the following animation focuses on one data structure.

MIT Lincoln Laboratory

100 Features per Second
For Each Stream

Performance Model
Data Structures

Model States (2048)

Targets (10)

Parameters (77)
Feature Vectors

1 2{ , , , }KX = x x x

1x 2x 3x 4x Universal Background Model

Target Models

Parameters (77)

Model States (2048)

38 Dimensional
152 Bytes Per Frame

Presenter
Presentation Notes
Here we see that each incoming speech frame yields a 152-byte feature vector.

MIT Lincoln Laboratory

Performance Model
Data Structures

Model States (2048)

Targets (10)

Parameters (77)
Feature Vectors

1 2{ , , , }KX = x x x

1x 2x 3x 4x Universal Background Model

Target Models

Parameters (77)

Model States (2048)

38 Dimensional

6 MB for all Targets
Only 5 States (15 KB)

Used Per Frame

100 Features per Second
For Each Stream

Presenter
Presentation Notes
At 6MB, the target models are large, but fast scoring allows us to score against only 6 states (15 KB) per incoming feature vector.

MIT Lincoln Laboratory

Performance Model
Data Structures

Model States (2048)

Targets (10)

Parameters (77)
Feature Vectors

1 2{ , , , }KX = x x x

1x 2x 3x 4x Universal Background Model

Target Models

Parameters (77)

Model States (2048)

38 Dimensional

616KB for Entire UBM
77 KB Resides on Each SPE

100 Features per Second
For Each Stream

Presenter
Presentation Notes
The universal background model is split into 8 pieces, using 77 KB on each SPE.

MIT Lincoln Laboratory

Performance Model
Simulation and Measurements

Computational Efficiency (Percent)

C
on

cu
rre

nt
 R

ea
l-T

im
e

S
pe

ec
h

S
tre

am
s

Presenter
Presentation Notes
We simulated the model with a variety of parameters. The Y-axis here is a metric for throughput—the number of real-time speech streams that can be concurrently processed by our system.

Our first sweep was of computational efficiency. We see that as we increase this efficiency, we project increases in performance. At high computational efficiency, this performance is strongly dependent on the data-transfer efficiency (the curve for 50% efficiency is shown). Preliminary computation-only measurements of follow our model’s predictions.

MIT Lincoln Laboratory

Performance Model
Simulation and Measurements

Computational Efficiency (Percent)

Increasing
optimization

C
on

cu
rre

nt
 R

ea
l-T

im
e

S
pe

ec
h

S
tre

am
s

Presenter
Presentation Notes
We simulated the model with a variety of parameters. The Y-axis here is a metric for throughput—the number of real-time speech streams that can be concurrently processed by our system.

Our first sweep was of computational efficiency. We see that as we increase this efficiency, we project increases in performance. At high computational efficiency, this performance is strongly dependent on the data-transfer efficiency (the curve for 50% efficiency is shown). Preliminary computation-only measurements of follow our model’s predictions.

MIT Lincoln Laboratory

Performance Model
Simulation and Measurements

C
on

cu
rre

nt
 R

ea
l-T

im
e

S
pe

ec
h

S
tre

am
s

Computational Efficiency (Percent)

Communication and
synchronization more

important here

Presenter
Presentation Notes
We simulated the model with a variety of parameters. The Y-axis here is a metric for throughput—the number of real-time speech streams that can be concurrently processed by our system.

Our first sweep was of computational efficiency. We see that as we increase this efficiency, we project increases in performance. At high computational efficiency, this performance is strongly dependent on the data-transfer efficiency (the curve for 50% efficiency is shown). Preliminary computation-only measurements of follow our model’s predictions.

MIT Lincoln Laboratory

Performance Model
Simulation and Measurements

• The effect of increasing the number of speakers, dialects,
or languages (targets) was simulated

– Changing the number of targets varies the amount of data
sent to SPEs and the amount of calculation per SPE

20% computational efficiency
50% data-transfer efficiency

C
on

cu
rre

nt
 R

ea
l-T

im
e

S
pe

ec
h

S
tre

am
s

Number of Speakers, Dialects, or Languages

Presenter
Presentation Notes
In the final simulation, we studied the projected effect of changing the number of target speakers, dialects, or languages. As can be observed, increasing the number of targets decreases the performance of the system because it requires increased amounts of data transfer and calculations.

MIT Lincoln Laboratory

Outline

• Introduction

• Recognition for speech applications using GMMs

• Parallel implementation of the GMM

• Performance model

• Conclusions and future work

Presenter
Presentation Notes
We will now conclude with a summary and opportunities for future work.

MIT Lincoln Laboratory

Conclusions
Summary

• Language, dialect, and speaker recognition systems are
large in scale and will benefit from parallelization due to
their need for high throughput

• GMM scoring is expensive both in terms of computing
resources and memory

• We have designed and modeled an algorithm to perform
GMM scoring in an efficient way

– Preserving often-used data on the SPEs
– Performing most calculations on the SPEs

Presenter
Presentation Notes
In this presentation, we have shown that speech-domain recognition problems are large in scale and will benefit from parallelization to achieve high throughput. GMM scoring is expensive in terms of both computing resources and memory required. In order to obtain high performance, we have designed and modeled and algorithm to perform GMM scoring in an efficient way, (1) preserving often-used data on the SPEs (keeping the system fed) and (2) performing most calculations on the SPEs (efficiently subdividing the algorithm).

MIT Lincoln Laboratory

Conclusions
Future Work

• Optimization and measurement of the full algorithm to
validate the model

• Compare our system against other state-of-the-art serial
and parallel approaches

– Intel single processor
– Intel multicore
– Intel networked
– Cell PPE

• Our results will become part of the PVTOL library

Presenter
Presentation Notes
Future work will include implementation of our algorithm to validate our model and compare our approach against other state-of-the-art serial and parallel systems. The resulting implementation will become part of the PVTOL library, allowing efficient implementation of GMM scoring over a variety of computational topologies.

MIT Lincoln Laboratory

Acknowledgement

• Cliff Weinstein
• Joe Campbell
• Alan McCree
• Tom Quatieri
• Sharon Sacco

Presenter
Presentation Notes
We would like to thank the following people for their support, ideas, and helpful discussions.

MIT Lincoln Laboratory

Backup

Presenter
Presentation Notes
These are backup slides.

MIT Lincoln Laboratory

Gaussian Mixture Model
Equation

• A Gaussian mixture model
(GMM) represents features as
the weighted sum of multiple
Gaussian distributions

• Each Gaussian state i has a
– Mean
– Covariance
– Weight

Dim 1Dim 2

iμ

iΣ

iw

()1/ 2/ 2
11

2(2)
1

(|) exp () ()i
D

i

M
w T

i i i
i

p
π

λ −

∑
=

= − − Σ −∑x x μ x μ

Model λ

(|)p λx

Presenter
Presentation Notes
This backup slide shows the equation for the GMM distribution, in case an audience member is interested.

	Language, Dialect, and Speaker Recognition Using Gaussian Mixture Models on the Cell Processor
	Outline
	Introduction�Automatic Recognition Systems
	Introduction�The Scale Challenge
	Introduction�The Scale Challenge
	Introduction�The Computational Challenge
	Outline
	Recognition Systems�Summary
	Recognition Systems�Frame-Based Processing
	Recognition Systems�Frame-Based Processing
	Recognition Systems�Frame-Based Processing
	Recognition Systems�Frame-Based Processing
	Recognition Systems�Frame-Based Processing
	Recognition Systems�Front-End Processing
	Recognition Systems�Pattern Recognition Training
	Recognition Systems�Pattern Recognition Training
	Recognition Systems�Gaussian Mixture Models
	Recognition Systems�Gaussian Mixture Models
	Recognition Systems�Gaussian Mixture Models
	Recognition Systems�Language, Speaker, and Dialect Models
	Recognition Systems�Universal Background Model
	Recognition Systems�Hypothesis Test
	Recognition Systems�Hypothesis Test
	Recognition Systems�Hypothesis Test
	Recognition Systems�Log-Likelihood Ratio Score
	Recognition Systems�Log-Likelihood Computation
	Recognition Systems�Log-Likelihood Computation
	Recognition Systems�Log-Likelihood Computation
	Recognition Systems�Log-Likelihood Computation
	Recognition Systems�Log-Likelihood Computation
	Outline
	Parallel Implementation of the GMM�Summary
	Parallel Implementation of the GMM�Cell Architecture
	Parallel Implementation of the GMM�Cell Design Principles
	Parallel Implementation of the GMM�Algorithm: Background Scoring
	Parallel Implementation of the GMM�Algorithm Step 1
	Parallel Implementation of the GMM�Algorithm Step 2
	Parallel Implementation of the GMM�Algorithm Step 3
	Parallel Implementation of the GMM�Algorithm Step 4
	Parallel Implementation of the GMM�Algorithm: Target Scoring
	Parallel Implementation of the GMM�Algorithm Step 5
	Parallel Implementation of the GMM�Algorithm Step 6
	Parallel Implementation of the GMM�Algorithm Step 7
	Parallel Implementation of the GMM �Implementation Challenges
	Outline
	Performance Model�Cell Resources
	Performance Model�Data Structures
	Performance Model�Data Structures
	Performance Model�Data Structures
	Performance Model�Data Structures
	Performance Model�Simulation and Measurements
	Performance Model�Simulation and Measurements
	Performance Model�Simulation and Measurements
	Performance Model�Simulation and Measurements
	Outline
	Conclusions�Summary
	Conclusions�Future Work
	Acknowledgement
	Backup
	Gaussian Mixture Model�Equation

