

Language, Dialect, and Speaker Recognition Using Gaussian Mixture Models on the Cell Processor

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner {nmalyska, smohindra, karen.lauro, reynolds, kepner}@ll.mit.edu

This work is sponsored by the United States Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

- Introduction
- Recognition for speech applications using GMMs
- Parallel implementation of the GMM
- Performance model
- Conclusions and future work

Introduction Automatic Recognition Systems

- In this presentation, we will discuss technology that can be applied to different kinds of recognition systems
 - Language recognition
 - Dialect recognition
 - Speaker recognition

Who is the speaker?

What language are they speaking?

What dialect are they using?

 Speech processing problems are often described as one person interacting with a single computer system and receiving a response

- Real speech applications, however, often involve data from multiple talkers and use multiple networked multicore machines
 - Interactive voice response systems
 - Voice portals
 - Large corpus evaluations with hundreds of hours of data

Information About Speaker, Dialect, or Language

- Speech-processing algorithms are computationally expensive
- Large amounts of data need to be available for these applications
 - Must cache required data efficiently so that it is quickly available
- Algorithms must be parallelized to maximize throughput
 - Conventional approaches focus on parallel solutions over multiple networked computers
 - Existing packages not optimized for high-performance-per-watt machines with multiple cores, required in embedded systems with power, thermal, and size constraints
 - Want highly-responsive "real-time" systems in many applications, including in embedded systems

- Introduction
- Recognition for speech applications using GMMs
- Parallel implementation of the GMM
- Performance model
- Conclusions and future work

- A modern language, dialect, or speaker recognition system is composed of two main stages
 - Front-end processing
 - Pattern recognition

- We will show how a speech signal is processed by modern recognition systems
 - Focus on a recognition technology called Gaussian mixture models

- The first step in modern speech systems is to convert incoming speech samples into *frames*
- A typical frame rate for a speech stream is 100 frames per second

Speech Frames

- The first step in modern speech systems is to convert incoming speech samples into *frames*
- A typical frame rate for a speech stream is 100 frames per second

Speech Frames

- The first step in modern speech systems is to convert incoming speech samples into *frames*
- A typical frame rate for a speech stream is 100 frames per second

Speech Frames

- The first step in modern speech systems is to convert incoming speech samples into *frames*
- A typical frame rate for a speech stream is 100 frames per second

Speech Frames

- The first step in modern speech systems is to convert incoming speech samples into *frames*
- A typical frame rate for a speech stream is 100 frames per second

Speech Frames

- Front-end processing converts observed speech frames into an alternative representation, *features*
 - Lower dimensionality
 - Carries information relevant to the problem

Recognition Systems Pattern Recognition Training

Training Features

- A recognition system makes decisions about observed data based on a knowledge of past data
- During *training*, the system learns about the data it uses to make decisions
 - A set of features are collected from a certain language, dialect, or speaker

Recognition Systems Pattern Recognition Training

- A recognition system makes decisions about observed data based on a knowledge of past data
- During *training*, the system learns about the data it uses to make decisions
 - A set of features are collected from a certain language, dialect, or speaker
 - A model is generated to represent the data

Recognition Systems Gaussian Mixture Models

- A Gaussian mixture model (GMM) represents features as the weighted sum of multiple Gaussian distributions
- Each Gaussian state i has a
 - Mean μ_i
 - Covariance Σ_i
 - Weight w_i

Recognition Systems Gaussian Mixture Models

Recognition Systems Gaussian Mixture Models

Recognition Systems Language, Speaker, and Dialect Models

Recognition Systems Universal Background Model

Recognition Systems Hypothesis Test

 Given a set of *test* observations, we perform a hypothesis test to determine whether a certain class produced it H_0 : X_{test} is from the hypothesized class

 H_1 : X_{test} is not from the hypothesized class

Recognition Systems Hypothesis Test

 Given a set of test observations, we perform a hypothesis test to determine whether a certain class produced it H_0 : X_{test} is from the hypothesized class

 H_1 : X_{test} is not from the hypothesized class

Recognition Systems Hypothesis Test

Given a set of *test* observations, we perform a hypothesis test to determine whether a certain class $p(\mathbf{x}|\lambda_1)$ produced it 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 $X_{test} = \{ \boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_K \}$ English? -15 Dim 2 .15 Dim 1 0.08 0.07 $p(\mathbf{x} \mid \lambda_{\overline{c}})$ 0.06 0.05 0.04 0.07 0.03 0.05 0.02 0.05 0.01 0.04 0.03-**Not English?** 0.02 0.01 -10 -15 -15 Dim 2 Dim 1 -15 Dim 2 Dim 1 **MIT Lincoln Laboratory**

• We determine which hypothesis is true using the ratio:

 $\frac{p(X \mid H_0)}{p(X \mid H_1)} \begin{cases} \geq \text{ threshold, } & \text{accept } H_0 \\ \leq \text{ threshold, } & \text{reject } H_0 \end{cases}$

• We use the *log-likelihood ratio score* to decide whether an observed speaker, language, or dialect is the target

 $\Lambda(X) = \log[p(X \mid \lambda_{c})] - \log[p(X \mid \lambda_{\overline{c}})]$

 $\Lambda(X) \begin{cases} \geq \text{threshold,} & X \text{ generated by } \lambda_C \\ < \text{threshold,} & X \text{ generated by } \lambda_{\overline{C}} \end{cases}$

$$\log[p(X \mid \lambda)] = \frac{1}{K} \sum_{i=1}^{K} \left(\log \sum_{i=1}^{M} \exp\left(C_{i} - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_{i}) \right) \right)$$

Dot product

$$\log[p(X \mid \lambda)] = \frac{1}{K} \sum_{i=1}^{K} \left(\log \sum_{i=1}^{M} \exp\left(C_{i} - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{i}) \right) \right)$$

$$\int \mathbf{U}_{\mathbf{y}}$$
Constant derived from weight and covariance

$$\log[p(X \mid \lambda)] = \frac{1}{K} \sum_{i=1}^{K} \left(\log \sum_{i=1}^{M} \exp\left(C_{i} - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i})\right) \right)$$

Table lookup used to
compute this function

$$\log[p(X \mid \lambda)] = \frac{1}{K} \sum_{i=1}^{K} \left(\log \sum_{i=1}^{M} \exp\left(C_{i} - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{i})\right) \right)$$

Sum over all *K* features

- Introduction
- Recognition for speech applications using GMMs
- Parallel implementation of the GMM
- Performance model
- Conclusions and future work

- We have developed an algorithm to perform GMM scoring on the Cell processor
- This scoring stage of pattern recognition is where much of the time is spent in current systems
- This section:
 - Describes the Cell Broadband Engine architecture
 - Summarizes the strengths and limitations of the Cell
 - Discusses step-by-step the algorithm we developed for GMM scoring on the Cell

Parallel Implementation of the GMM Cell Architecture

- The Cell Broadband Engine has leading performance-per-watt specifications in its class
- Synergistic processing elements (SPEs)
 - 256KB of local store memory
 - 25.6 GFLOPs per SPE
 - SIMD instructions
- PowerPC processor element (PPE)
- PPE and multiple SPEs operate in parallel and communicate via a high-speed bus
 - 12.8e9 bytes/second (one way)
- Each SPE can transfer data from main memory using DMA
 - PPE can effectively "send" data to the SPEs using this method

- Limitations of the Cell processor
 - Size of local store is small—only 256KB
 - All SPE data must explicitly be transferred in and out of local store
 - The PPE is much slower than the SPEs
- Solutions to maximize throughput
 - Do computations on SPEs when possible
 - Minimize time when SPEs are idle
 - Keep commonly-used data on SPEs to avoid cost of transferring to local store

Parallel Implementation of the GMM Algorithm: Background Scoring

Begin with a background model and a single feature vector **On PPE** $p(\mathbf{x} \mid \lambda_{\bar{c}})$ 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Dim 2 15 -15 Dim 1 **On PPE** \boldsymbol{x}_1

- 616K model is split across
 SPEs since it will not fit on single SPE
- Kept on SPEs throughout scoring procedure

Parallel Implementation of the GMM Algorithm: Target Scoring

 Begin with a target model and keep the single feature vector on the SPEs

On SPEs

- Distribute target model states to the SPEs
 - Only a subset of states need to be scored (called *Gaussian short-lists*)

 Score feature vectors against target models

Collect target scores from

SPEs and aggregate

- We have begun implementing our algorithm on the Cell processor
- Implementing vectorization is a challenge
 - Concentrate on optimizing dot product and aggregation algorithms

$$\log[p(X \mid \lambda)] = \frac{1}{K} \sum_{1}^{K} \left(\log \sum_{i=1}^{M} \exp\left(C_{i} - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_{i})\right) \right)$$

- Designing data transfers is another challenging problem
 - Subdividing and distributing the models to minimize transfer time
 - Timing transfers so that they overlap with computation (double buffering)

- Introduction
- Recognition for speech applications using GMMs
- Parallel implementation of the GMM
- Performance model
- Conclusions and future work

Cell Resources

Performance Model Simulation and Measurements

Computational Efficiency (Percent)

Performance Model Simulation and Measurements

Computational Efficiency (Percent)

Performance Model Simulation and Measurements

Computational Efficiency (Percent)

- The effect of increasing the number of speakers, dialects, or languages (targets) was simulated
 - Changing the number of targets varies the amount of data sent to SPEs and the amount of calculation per SPE

- Introduction
- Recognition for speech applications using GMMs
- Parallel implementation of the GMM
- Performance model
- Conclusions and future work

- Language, dialect, and speaker recognition systems are large in scale and will benefit from parallelization due to their need for high throughput
- GMM scoring is expensive both in terms of computing resources and memory
- We have designed and modeled an algorithm to perform GMM scoring in an efficient way
 - Preserving often-used data on the SPEs
 - Performing most calculations on the SPEs

- Optimization and measurement of the full algorithm to validate the model
- Compare our system against other state-of-the-art serial and parallel approaches
 - Intel single processor
 - Intel multicore
 - Intel networked
 - Cell PPE
- Our results will become part of the PVTOL library

- Cliff Weinstein
- Joe Campbell
- Alan McCree
- Tom Quatieri
- Sharon Sacco

Backup

Gaussian Mixture Model Equation

- A Gaussian mixture model (GMM) represents features as the weighted sum of multiple Gaussian distributions
- Each Gaussian state i has a
 - Mean μ_i
 - Covariance Σ_i
 - Weight w_i

$$p(\boldsymbol{x} \mid \boldsymbol{\lambda}) = \sum_{i=1}^{M} \frac{w_i}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i)\right)$$

