
Scalable SAR with Sourcery VSIPL++ for the Cell/B.E.
Benchmarking open-architecture programming approaches to multi-core architectures.

J. Bergmann, M. LeBlanc, D. McCoy, B. Moses, S. Seefeld
CodeSourcery, Inc.

jules@codesourcery.com

Introduction
Scalable SAR is part of the HPEC Challenge Benchmark
Suite [5][6][7]. It is a synthetic application that accurately
models the computation performed in Synthetic Aperture
Radar (SAR) image formation [6]. It is designed to be
representative of the types of embedded processing that
occur in aerospace, medical, and reconnaissance
processing.

Sourcery VSIPL++ for the Cell/B.E. [1][2] is an
implementation of the open standard VSIPL++ signal and
image-processing API [1] on the IBM Cell/B.E. multi-core
processor architecture [4]. It is suitable for implementing
high-performance signal-processing applications that take
full advantage of the Cell/B.E. processor throughput,
without sacrificing programmer productivity or application
portability.

This paper presents an implementation of the Scalable
SAR synthetic application in VSIPL++. This
implementation will allow productivity, performance, and
portability comparisons to be made, illustrating the
potential benefits of Sourcery VSIPL++ as an open-
architecture programming approach to complex multi-core
architectures such as the Cell/B.E.

Scalable SAR
Scalable SAR consists of a scalable data generator, four
separate computational and I/O kernels, and a validation
component. For this comparison, the kernel performing
SAR image formation was implemented in VSIPL++. The
kernel performs fast-time filter, bandwidth expansion,
matched filtering, interpolation, and 2D FFT steps (Figure
1). These steps use a range of signal processing functions,
including 1D FFT, interpolation, and element-wise
operations. In between several of the steps, data must be
rearranged in memory through a “corner-turn” for more
efficient processing.

Major
Computations:

Fast-time
Filter

Bandwidth
Expand

Matched
Filter

Interpolate
Inv 2D FFT

Raw SAR
Return

Formed
SAR Image

FFT
vmul

mmul
FFT
pad
FFT-1

FFT
mmul

interpolate
FFT-1

Figure 1: Processing steps in SAR image formation.

Sourcery VSIPL++ for Cell/B.E.
The Cell/B.E. is an asymmetric, multi-core processor
architecture developed by IBM, Sony, and Toshiba. It is
described as “supercomputer on a chip” capable of over
200 peak single-precision GFLOP/s on a single chip with 9
cores. For more detailed descriptions of its architecture,
refer to [4].

Numerous authors have commented on the challenge of
programming the Cell effectively. Sacco [10] lists nearly a
dozen concerns brought about by architectural features that
a programmer must consider when trying to program the
hardware directly at a low-level. Addressing these
concerns is reported to increase code size by a factor of 16.

Sourcery VSIPL++ for the Cell/B.E. simplifies Cell/B.E.
programming by presenting a simple programming model
that can make optimal utilization of the Cell/B.E.’s
capabilities. The PPE control processor runs the
application while the SPE accelerators are used as high-
performance computation engines. IBM’s Acceleration
Library Framework (ALF) [9] manages the SPEs, handling
initialization and double-buffered data transfer to hide
communication latency behind computation.

Computations which can be mapped to the SPEs are
recognized by Sourcery VSIPL++’s dispatch engine.
Compile-time and run-time attributes control how SPEs
are allocated for a computation. A variety of factors are
considered, including the data layout, the operation being
performed, and the ratio of computation to communication.
Application attributes can also be used to tune the SPE
allocation.

Existing VSIPL++ applications can take advantage of the
Cell/B.E. simply by recompiling for the new target.
Performance can be tuned by modifying data structure
attributes to influence resource allocation, and by using
fused operations to create locality and optimization
potential.

In previous work [1], a high performance VSIPL++
implementation of fast convolution was demonstrated,
which achieved 40% of peak performance across
Cell/B.E., Xeon, and multiple PowerPC architectures
without requiring system or architecture specific code.

Results Preview
The following results will be presented at HPEC 2008.

First, productivity results will compare the number of lines
of code required to implement the synthetic SAR
computation kernels in VSIPL++ with other available
implementations, including the reference Matlab
implementation. Our experience in previous comparisons
of this type is that VSIPL++ applications have
approximately 60% fewer lines of code than comparable
C-VSIPL/MPI applications.

Second, performance results will present the computation
throughput of the VSIPL++ synthetic SAR application.
These measurements will be compared against the
theoretical peak for the architecture, the algorithmic
theoretical peak (architectural theoretical peak adjusted to
represent limiting factors in the algorithm, such as
computation/communication ratio, special instruction
requirements, and so on), and the performance of other
available implementations. Performance results will be

presented for the Cell/B.E. architecture and other
commodity architectures used in the DOD signal and
image processing space. Our previous experience in
benchmarking VSIPL++ applications is that they achieve
performance that is close to the algorithmic limits, and
comparable to that of applications written in C-
VSIPL/MPI and vendor libraries.

Third, portability results will measure the amount of work
necessary to port the VSIPL++ synthetic SAR application
across multiple architectures. Portability will be measured
using two metrics. First, the porting effort will be
measured by the number of lines of code necessary to
change to port the application to a new platform. Second,
the porting quality will be measured by the performance
achieved by the ported application. Our previous
experience in porting VSIPL++ applications is that very
few lines of code need to be modified, and that similar
performance is achieved in terms of percentage of peak
utilizations.

Conclusion
Sourcery VSIPL++ for the Cell/B.E. provides an open
architecture approach for high-performance programming
the Cell/B.E. Applications are written with a simple
programming model, achieve high performance, and
remain portable to other architectures. Implementing the
HPEC Scalable SAR synthetic application in VSIPL++
enables these claims to be verified by comparisons with
other Scalable SAR implementations.

References
[1] J. Bergmann, M. Mitchell, D. McCoy, S. Seefeld, A.

Salama, F. Christensen, R. Pancoast, and T. Steck.
“Sourcery VSIPL++ for the Cell/B.E.” HPEC Workshop,
Lexington, MA, 2007.

[2] CodeSourcery, Inc. VSIPL++ Specification 1.0. Georgia
Tech Res. Corp. 2005 [online] Available: http://www.hpec-
si.org.

[3] CodeSourcery, Inc. Sourcery VSIPL++. [online] Available:
http://www.codesourcery.com/vsiplplusplus.

[4] M. Gschwind, et al. “Synergistic Processing in Cell’s
Multicore Architecture.” IEEE Micro, March 2006.

[5] R. Haney, J. Kepner, T. Meuse. “The HPEC Challenge
Benchmark Suite.” HPEC Workshop, Lexington, MA,
2006.

[6] R. Haney, T. Meuse, J. Kepner, and J. Lebak. The High
Performance Embedded Computing (HPEC) Challenge
Benchmark Suite. MIT/LL 2005. [online] Available:
http://www.ll.mit.edu/HPECChallenge.

[7] R. Haney, T. Meuse, J. Kepner, and J. Lebak. “The High
Performance Embedded Computing (HPEC) Challenge
Benchmark Suite.” HPEC Workshop, Lexington, MA, 2005.

[8] High Performance Embedded Computing Software
Initiative. [online] Available http://www.hpec-si.org/.

[9] IBM Cell Broadband Engine Software Development Kit.
[online] Available: http://www.alphaworks.ibm.com/tech/
cellsw?open&S_TACT=105AGX16&S_CMP=DWPA

[10] S. Sacco, G. Shrader, and J. Kepner. “Exploring the Cell
with HPEC Challenge Benchmarks.” HPEC Workshop,
Lexington, MA, 2006.

