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General Purpose GPU Computing

• Modern GPUs have unified shader architecture
• Highly parallel programmable processing units
• Flexibility extends GPU beyond rasterized 3D graphics
• New vendor focus on high-performance computing:

• NVIDIA’s CUDA, ATI’s CTM

• High theoretical performance (500 GFLOPs or more)
• Leverages volume & competition in entertainment industry 

• Worldwide GPUs: $5B, 10M units per year
• U.S. Video Games: $7.5B, 250M units 2004
• Holds down unit-price, drives advancement

• Outstripping CPU capacity, and growing more quickly
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GPU Performance Trends: Unified Shaders

R580

NV40

Dual Core
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HPEC Challenge Benchmarks
• HPEC Challenge

• How will candidate architecture perform in real application?
• Nine kernel benchmarks and one application benchmark.
• Seven attempted:

• Corner turn, Time-domain FIR, Frequency-domain FIR, Constant False 
Alarm Rate, Pattern Matching, Graph Optimization via Genetic 
Algorithm, QR Factorization

• http://www.ll.mit.edu/HPECchallenge/

• Experimental System
• NVIDIA GeForce 8800 GTX
• Intel Core2 Q6600 2.4 GHz
• Windows XP Professional, Visual C++ 2005 host C++ compiler
• NVIDIA CUDA 1.1

http://www.ll.mit.edu/HPECchallenge/
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CUDA Programming Model
• Compute Unified Device Architecture (CUDA)

• C-like programming language for executing kernels on GPU 
without casting as 3D graphics operation

• Keywords denote memory placement, grid environment, thread 
index

• Built-in functions for synchronization, fast math, cycle counts
• Runtime API for memory management, launching kernels, 

synchronizing host
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GPU Architecture (G80)

• Programmable units 
arranged as 16 
“multiprocessors”

• For multiprocessor:
• eight datapaths

• Single-precision and int

• 16 kB scratchpad 
• 8,192 word register file
• Scheduler

• 384-bit memory bus handles 
requests from all threads

• 1.3 GHz core clock, 575 MHz 
memory
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• Problem logically decomposed into “blocks”
• Scheduler maps blocks to available multiprocessors for 

concurrent execution
• Execution order not defined, synchronization not defined

• Blocks partitioned into threads
• Threads meant to be executed in SIMD manner on 

multiprocessor
• More threads than datapaths

• set of active threads known as “warp”
• scheduler devotes two cycles per “half warp”
• floating-point MADD has latency of 4 cycles

• When threads stall due to memory accesses, another warp is 
activated
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• Benchmark:
• Compute real-valued transpose 

out of place
• Strategies:

• coalesce reads and writes of 
adjacent threads to adjacent 
global memory locations

• transpose in shared memory
• minimize overhead of address 

computation
• Good match for GPU:

• Set 1: 0.30 ms – 8.32x speedup
• Set 2: 4.60 ms – 11.4x speedup

T

T Shared
memory
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Time-Domain FIR
• Benchmark:

• convolve a set of FIR filters with 
a set of input vectors

• Strategies:
• filter coefficients fit in shared 

memory
• map each filter to a block
• large number of threads per 

block overlap computation with 
streaming of input vector

• loop unrolling to improve 
utilization

• Good match for GPU
• Set 1: 2.54 ms - 151x speedup
• Set 2: 0.09 ms – 22.2x speedup

Yblock [thread] = 

hblock [0] * xblock [ thread ] +

hblock [1] * xblock [ thread – 1] +

hblock [2] * xblock [ thread – 2] +

.

.

. 

Presenter
Presentation Notes
This slide could be better - 
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Frequency-Domain FIR

• Benchmark:
• fast convolution of set of FIR 

filters in the frequency domain

• Strategies:
• NVIDIA’s CUFFT library 

provides Fast Fourier 
Transform

• kernel performs complex 
element-wise multiplication

• Good match for GPU
• FFT speedup greater for large 

input vectors
• Set 1: 3.25 ms – 19.7x speedup
• Set 2: 0.26 ms – 11.5x speedup
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Constant False Alarm Rate Detection
• Benchmark:

• Beams x Range Gates x Doppler 
Bins

• Normalize each cell by 
surrounding noise estimate

• Strategies:
• map each (beam, Doppler bin) to 

a block
• Stream range gates and 

compute noise estimate
• Good match for GPU

• Set 1: 0.29 ms – 2.3x speedup
• Set 2: 3.5 ms – 166x speedup
• Set 3: 3.4 ms – 46.8x speedup
• Set 4: 2.7 ms – 25.6x speedup

C(i, j, k) = T(i, j, k)-1 | C(i, j, k) |2
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Pattern Matching
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• Benchmark:

• Compute mean squared 
error (MSE) of input vector 
with template library

• Determine optimal shift and 
scale for minimum MSE

• Strategies:

• Process each pattern in 
parallel (one per block)

• Each thread computes one 
shift  then one gain

• Good match for GPU

Pattern Matching {
for each of K patterns {
for each of Sr shift values {
find MSE of input with 
shifted pattern;

}
select shift with least MSE;

for each of Sm magnitudes {
find MSE of input with 
scaled pattern;

}
choose gain with least MSE;

}
choose gain, shift, pattern with
least MSE;

}

• Set 1: 0.24 ms – 12.7x speedup
• Set 2: 1.65 ms – 23.1x speedup
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Graph Optimization via Genetic Algorithms

• Benchmark:
• use a genetic algorithm to 

search a problem space
• Roulette wheel selection
• Evaluation based on lookup 

table
• Elite chromosomes immune to 

mutation

• Strategies
• batch kernel calls to perform 

iteration
• Implement parallel RNG
• Selection and reproduction is a 

gather operation
• Crossover, mutation are parallel
• Evaluation is parallel

Genetic Algorithm {

Initialization; 
Evaluation;

while !finished {

Selection;
Reproduction;
Crossover; 
Mutation;
Evaluation;

} 
}

• Set 1: 0.5 ms – 15.6x speedup
• Set 2: 11.7 ms – 33.3x speedup
• Set 3: 1.0 ms – 21.9x speedup
• Set 4: 4.1 ms – 23.7x speedup
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QR Factorization: Fast Givens
• Benchmark:

• A = QR, QHQ = I, R upper triangular
• Fast Givens:

• few square roots
• fine-grain parallelization
• streaming implementation requires 

different programs to run on several 
nodes

• GPU Characteristics:
• Fine-grain parallelization among 

threads of one block
• SIMD execution among threads
• Square roots inexpensive
• Shared memory capacity limited

M = eye(m, m);
d = ones(m);

for j = 1 : n {

for i = m: -1: j+1 {

[α, β, τ] = fast.givens(
A(i-1:i, j:n), d(i-1:i));

A(i-1:i, j:n) = 
G(α, β, τ)T A(i-1:i, j:n);

M(j:m, i-1:i) = 
M(j:m, i-1:i) G(α, β, τ);

}
}
D = diag(d);
Q = M D-1/2;
R = D1/2 A;
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Fast Givens {
do {
// kernel 1 – one block
load several columns of A;
move up columns rotating A

with threads staggered;
write rotations to global memory;

// kernel 2 – sixteen blocks
load rotations;
load columns from remaining
submatrix of A;

apply rotations to A in order;

load submatrix of M;
apply rotations to M in order;

move active window right;

} until all columns zeroed;  
}

A

K 
1

A

K2

A

….

M

K2
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QR on GPU Conclusions
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• Fast Givens not greatest match
• Parallelism well-suited to synchronous data flow architecture
• Avoids calculations that are fast on GPU
• 2n2(m-n/3) flops

• Results:
• Set 1: 20. ms – 4.6x speedup
• Set 2: 4.5 ms – 1.5x speedup
• Set 3: 1.8 ms – 5.6x speedup

• Other QR methods:
• Householder reflections:

• compute v such that (I – β v vT)x = ||x|| e1

• A – v (β ATv)T A
• serial, parallel, serial, parallel, … fast with batched calls
• 2n2(m-n/3) flops
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GPU Limitations
• GPU Memory Architecture

• G80 lacks globally visible, writable cache
• Global memory has high latency
• Shared memory fast, limited in capacity

• Fine-grain Parallelism
• Threads share data directly with fast synchronization 
• Blocks share via global memory, multiple kernel invocations
• Atomic memory operations possible with newer GPUs

• Kernel latency
• CPU GPU communications limited by PCI-Express Bus

• Newer GPUs permit DMA while kernels execute (G92)
• Delay incurred when calling kernel, copying results
• Tolerable for large data sizes and batched calls
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Conclusions
• GPU speedup possible for most classes of problems

• Memory hierarchy and threading model drive implementation
• High memory bandwidth, high parallelism good implementation 

of streaming architecture
• Cleverness required for fast implementations 
• High performance

• Fine-grain parallelism not great match
• No formal synchronization across blocks

• Benchmarks should grant flexibility to implementation
• don’t require obscure algorithms to solve common problems 
• don’t define metrics biased away from coprocessors without 

necessity
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