
GTRI_B-1
1

GPU Performance Assessment
with HPEC Challenge

High Performance Embedded Computing (HPEC)
Workshop

September 25, 2008

Andrew Kerr, Dan Campbell,
Mark Richards

andrew.kerr@gtri.gatech.edu, dan.campbell@gtri.gatech.edu,
mark.richards@ece.gatech.edu

Distribution Statement (A): Approved for
public release; distribution is unlimited

This work was supported in part by DARPA and AFRL
under contracts FA8750-06-1-0012 and FA8650-07-C-
7724. The opinions expressed are those of the authors.

mailto:arkerr@gtri.gatech.edu
mailto:dan.campbell@gtri.gatech.edu
mailto:mark.richards@ece.gatech.edu

GTRI_B-2
2

General Purpose GPU Computing

• Modern GPUs have unified shader architecture
• Highly parallel programmable processing units
• Flexibility extends GPU beyond rasterized 3D graphics
• New vendor focus on high-performance computing:

• NVIDIA’s CUDA, ATI’s CTM

• High theoretical performance (500 GFLOPs or more)
• Leverages volume & competition in entertainment industry

• Worldwide GPUs: $5B, 10M units per year
• U.S. Video Games: $7.5B, 250M units 2004
• Holds down unit-price, drives advancement

• Outstripping CPU capacity, and growing more quickly

GTRI_B-3
3

General Purpose GPU Computing

• Modern GPUs have unified shader architecture
• Highly parallel programmable processing units
• Flexibility extends GPU beyond rasterized 3D graphics
• New vendor focus on high-performance computing:

• NVIDIA’s CUDA, ATI’s CTM

• High theoretical performance (500 GFLOPs or more)
• Leverages volume & competition in entertainment industry

• Worldwide GPUs: $5B, 10M units per year
• U.S. Video Games: $7.5B, 250M units 2004
• Holds down unit-price, drives advancement

• Outstripping CPU capacity, and growing more quickly

GTRI_B-4
4

GPU Performance Trends: Unified Shaders

R580

NV40

Dual Core

GTRI_B-5
5

HPEC Challenge Benchmarks
• HPEC Challenge

• How will candidate architecture perform in real application?
• Nine kernel benchmarks and one application benchmark.
• Seven attempted:

• Corner turn, Time-domain FIR, Frequency-domain FIR, Constant False
Alarm Rate, Pattern Matching, Graph Optimization via Genetic
Algorithm, QR Factorization

• http://www.ll.mit.edu/HPECchallenge/

• Experimental System
• NVIDIA GeForce 8800 GTX
• Intel Core2 Q6600 2.4 GHz
• Windows XP Professional, Visual C++ 2005 host C++ compiler
• NVIDIA CUDA 1.1

http://www.ll.mit.edu/HPECchallenge/

GTRI_B-6
6

CUDA Programming Model
• Compute Unified Device Architecture (CUDA)

• C-like programming language for executing kernels on GPU
without casting as 3D graphics operation

• Keywords denote memory placement, grid environment, thread
index

• Built-in functions for synchronization, fast math, cycle counts
• Runtime API for memory management, launching kernels,

synchronizing host

GTRI_B-7
7

GPU Architecture (G80)

• Programmable units
arranged as 16
“multiprocessors”

• For multiprocessor:
• eight datapaths

• Single-precision and int

• 16 kB scratchpad
• 8,192 word register file
• Scheduler

• 384-bit memory bus handles
requests from all threads

• 1.3 GHz core clock, 575 MHz
memory

GPU

Multiprocessor
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath

Shared
Memory

Register
File

Texture cache

Multiprocessor
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath

Shared
Memory

Register
File

Multiprocessor

Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath
Datapath

Shared
Memory

Register
File

Global Memory

GTRI_B-8

CUDA Grids, Threads, and Blocks

8

• Problem logically decomposed into “blocks”
• Scheduler maps blocks to available multiprocessors for

concurrent execution
• Execution order not defined, synchronization not defined

• Blocks partitioned into threads
• Threads meant to be executed in SIMD manner on

multiprocessor
• More threads than datapaths

• set of active threads known as “warp”
• scheduler devotes two cycles per “half warp”
• floating-point MADD has latency of 4 cycles

• When threads stall due to memory accesses, another warp is
activated

GTRI_B-9

Corner Turn

9

• Benchmark:
• Compute real-valued transpose

out of place
• Strategies:

• coalesce reads and writes of
adjacent threads to adjacent
global memory locations

• transpose in shared memory
• minimize overhead of address

computation
• Good match for GPU:

• Set 1: 0.30 ms – 8.32x speedup
• Set 2: 4.60 ms – 11.4x speedup

T

T Shared
memory

GTRI_B-10
10

Time-Domain FIR
• Benchmark:

• convolve a set of FIR filters with
a set of input vectors

• Strategies:
• filter coefficients fit in shared

memory
• map each filter to a block
• large number of threads per

block overlap computation with
streaming of input vector

• loop unrolling to improve
utilization

• Good match for GPU
• Set 1: 2.54 ms - 151x speedup
• Set 2: 0.09 ms – 22.2x speedup

Yblock [thread] =

hblock [0] * xblock [thread] +

hblock [1] * xblock [thread – 1] +

hblock [2] * xblock [thread – 2] +

.

.

.

Presenter
Presentation Notes
This slide could be better -

GTRI_B-11
11

Frequency-Domain FIR

• Benchmark:
• fast convolution of set of FIR

filters in the frequency domain

• Strategies:
• NVIDIA’s CUFFT library

provides Fast Fourier
Transform

• kernel performs complex
element-wise multiplication

• Good match for GPU
• FFT speedup greater for large

input vectors
• Set 1: 3.25 ms – 19.7x speedup
• Set 2: 0.26 ms – 11.5x speedup

GTRI_B-12
12

Constant False Alarm Rate Detection
• Benchmark:

• Beams x Range Gates x Doppler
Bins

• Normalize each cell by
surrounding noise estimate

• Strategies:
• map each (beam, Doppler bin) to

a block
• Stream range gates and

compute noise estimate
• Good match for GPU

• Set 1: 0.29 ms – 2.3x speedup
• Set 2: 3.5 ms – 166x speedup
• Set 3: 3.4 ms – 46.8x speedup
• Set 4: 2.7 ms – 25.6x speedup

C(i, j, k) = T(i, j, k)-1 | C(i, j, k) |2

GTRI_B-13

Pattern Matching

13

• Benchmark:

• Compute mean squared
error (MSE) of input vector
with template library

• Determine optimal shift and
scale for minimum MSE

• Strategies:

• Process each pattern in
parallel (one per block)

• Each thread computes one
shift then one gain

• Good match for GPU

Pattern Matching {
for each of K patterns {
for each of Sr shift values {
find MSE of input with
shifted pattern;

}
select shift with least MSE;

for each of Sm magnitudes {
find MSE of input with
scaled pattern;

}
choose gain with least MSE;

}
choose gain, shift, pattern with
least MSE;

}

• Set 1: 0.24 ms – 12.7x speedup
• Set 2: 1.65 ms – 23.1x speedup

GTRI_B-14
14

Graph Optimization via Genetic Algorithms

• Benchmark:
• use a genetic algorithm to

search a problem space
• Roulette wheel selection
• Evaluation based on lookup

table
• Elite chromosomes immune to

mutation

• Strategies
• batch kernel calls to perform

iteration
• Implement parallel RNG
• Selection and reproduction is a

gather operation
• Crossover, mutation are parallel
• Evaluation is parallel

Genetic Algorithm {

Initialization;
Evaluation;

while !finished {

Selection;
Reproduction;
Crossover;
Mutation;
Evaluation;

}
}

• Set 1: 0.5 ms – 15.6x speedup
• Set 2: 11.7 ms – 33.3x speedup
• Set 3: 1.0 ms – 21.9x speedup
• Set 4: 4.1 ms – 23.7x speedup

GTRI_B-15
15

QR Factorization: Fast Givens
• Benchmark:

• A = QR, QHQ = I, R upper triangular
• Fast Givens:

• few square roots
• fine-grain parallelization
• streaming implementation requires

different programs to run on several
nodes

• GPU Characteristics:
• Fine-grain parallelization among

threads of one block
• SIMD execution among threads
• Square roots inexpensive
• Shared memory capacity limited

M = eye(m, m);
d = ones(m);

for j = 1 : n {

for i = m: -1: j+1 {

[α, β, τ] = fast.givens(
A(i-1:i, j:n), d(i-1:i));

A(i-1:i, j:n) =
G(α, β, τ)T A(i-1:i, j:n);

M(j:m, i-1:i) =
M(j:m, i-1:i) G(α, β, τ);

}
}
D = diag(d);
Q = M D-1/2;
R = D1/2 A;

GTRI_B-16

Fast Givens: GPU Strategy

16

Fast Givens {
do {
// kernel 1 – one block
load several columns of A;
move up columns rotating A

with threads staggered;
write rotations to global memory;

// kernel 2 – sixteen blocks
load rotations;
load columns from remaining
submatrix of A;

apply rotations to A in order;

load submatrix of M;
apply rotations to M in order;

move active window right;

} until all columns zeroed;
}

A

K
1

A

K2

A

….

M

K2

GTRI_B-17

QR on GPU Conclusions

17

• Fast Givens not greatest match
• Parallelism well-suited to synchronous data flow architecture
• Avoids calculations that are fast on GPU
• 2n2(m-n/3) flops

• Results:
• Set 1: 20. ms – 4.6x speedup
• Set 2: 4.5 ms – 1.5x speedup
• Set 3: 1.8 ms – 5.6x speedup

• Other QR methods:
• Householder reflections:

• compute v such that (I – β v vT)x = ||x|| e1

• A – v (β ATv)T A
• serial, parallel, serial, parallel, … fast with batched calls
• 2n2(m-n/3) flops

GTRI_B-18
18

GPU Limitations
• GPU Memory Architecture

• G80 lacks globally visible, writable cache
• Global memory has high latency
• Shared memory fast, limited in capacity

• Fine-grain Parallelism
• Threads share data directly with fast synchronization
• Blocks share via global memory, multiple kernel invocations
• Atomic memory operations possible with newer GPUs

• Kernel latency
• CPU GPU communications limited by PCI-Express Bus

• Newer GPUs permit DMA while kernels execute (G92)
• Delay incurred when calling kernel, copying results
• Tolerable for large data sizes and batched calls

GTRI_B-19
19

Conclusions
• GPU speedup possible for most classes of problems

• Memory hierarchy and threading model drive implementation
• High memory bandwidth, high parallelism good implementation

of streaming architecture
• Cleverness required for fast implementations
• High performance

• Fine-grain parallelism not great match
• No formal synchronization across blocks

• Benchmarks should grant flexibility to implementation
• don’t require obscure algorithms to solve common problems
• don’t define metrics biased away from coprocessors without

necessity

GTRI_B-20

References

20

• HPEC Challenge Benchmarks
• http://www.ll.mit.edu/HPECchallenge/

• Golub and Van Loan. Matrix Computations. Johns Hopkins
University Press, 3rd edition. 1996.

• NVIDIA CUDA Programming Guide 1.1
• http://www.nvidia.com/object/cuda_develop.html

http://www.ll.mit.edu/HPECchallenge/
http://www.nvidia.com/object/cuda_develop.html

GTRI_B-21

Questions

Questions?

21

	GPU Performance Assessment with HPEC Challenge
	General Purpose GPU Computing
	General Purpose GPU Computing
	GPU Performance Trends: Unified Shaders
	HPEC Challenge Benchmarks
	CUDA Programming Model
	GPU Architecture (G80)
	CUDA Grids, Threads, and Blocks
	Corner Turn
	Time-Domain FIR
	Frequency-Domain FIR
	Constant False Alarm Rate Detection
	Pattern Matching
	Graph Optimization via Genetic Algorithms
	QR Factorization: Fast Givens
	Fast Givens: GPU Strategy
	QR on GPU Conclusions
	GPU Limitations
	Conclusions
	References
	Questions

