

Fixed and Reconfigurable Multi-Core Device Characterization for HPEC

Jason Williams Alan D. George Justin Richardson Kunal Gosrani Siddarth Suresh

NSF CHREC Center ECE Department, University of Florida

September 23-25, 2008

Outline

- Background
- RC Taxonomy
- Reconfigurability Factors
- Computational Density Metrics
- Internal Memory Bandwidth Metric
- Results & Analysis
- Future Work
- Conclusions

Background

- Moore's law continues to hold true, transistor counts doubling every 18 months
 - But can no longer rely upon increasing clock rates (f_{clk}) and instruction-level parallelism (ILP) to meet computing performance demands
- How to best exploit ever-increasing on-chip transistor counts?
 - Architecture Reformation: Multi- & many-core (MC) devices are new technology wave
 - Application Reformation: focus on exploiting explicit parallelism in these new devices

Background

- What MC architecture options are available?
 - Fixed MC: fixed hardware structure, cannot be changed post-fab
 - <u>Reconfigurable MC</u>: can be adapted post-fab to changing problem req's

- How to compare disparate device technologies?
 - Need for taxonomy & device analysis early in development cycle
 - Challenging due to vast design space of FMC and RMC devices
 - We are developing a suite of metrics; two are focus of this study:
 - Computational Density per Watt captures computational performance and power consumption, more relevant for HPEC than pure performance metrics
 - Internal Memory Bandwidth describes device's on-chip memory access capabilities

Reconfigurability Factors

Metric Overview	
 Metric Description 	

- Computational Density (CD)
 - Measure of computational performance across range of parallelism, grouped by process technology
- Computational Density per Watt (CDW)
 - CD normalized by power consumption
- Internal Memory Bandwidth (IMB)
 - Describes device's memory-access capabilities with on-chip memories

• CD & CDW Precisions (5 in all)

 Bit-Level, 16-bit Integer, 32-bit Integer, Single-Precision Floating-Point (SPFP), and Double-Precision Floating-Point (DPFP)

• IMB

Block-based vs. Cache-based systems

Devices	Studied	(18)
		- /

		Ambric Am2045 ¹			
	130 nm FMC	ClearSpeed CSX600			
		Freescale MPC7447			
		Altera Stratix-II EP2S180			
		ElementCXI ECA-64			
		Mathstar Arrix FPOA			
	90 nm RMC	Raytheon MONARCH			
		Tilera TILE64			
		Xilinx Virtex-4 LX200			
		Xilinx Virtex-4 SX55			
5	90 nm FMC	Freescale MPC8640D			
		IBM Cell BE			
		Altera Stratix-III EP3SL340			
	65 nm DMC	Altera Stratix-III EP3SE260			
		Xilinx Virtex-5 LX330T			
		Xilinx Virtex-5 SX95T			
	45 nm FMC	Intel Atom N270 ²			
	40 nm RMC	Altera Stratix-IV EP4SE530			

¹ Preliminary results based on limited vendor data (Ambric)

² Limited Atom cache data, not included in IMB results

Integer & Floating-Point Analysis

Metric Methodology

CD for FPGAs
 Bit-level

o In

$$CD_{bit} = f_{max} \times \left[N_{LUT} + \sum_{i} W_{i} \times N_{i} \right]$$

f_{max} is max device frequency, *N_{LUT}* is number of look-up tables, *W_i* & *N_i* are width & number of fixed resources

teger
$$CD_{int/FP} = (Ops_{DSP} + Ops_{LOGIC}) \times f_{achievable}$$

- Use method on right with Integer cores
- Floating-point

Use method on right with FP cores

<u>Overhead</u> - Reserve 15% logic resources for steering logic and memory or I/O interfacing <u>Memory-sustainable CD</u> – Limit CD based on # of parallel paths to on-chip memory; each operation requires 2 memory locations <u>Parallel Operations</u> – scales up to max. # of adds and mults (# of

adds = # of mults)

<u>Achievable Frequency</u> – Lowest frequency after PAR of DSP & logic-only implementations of add & mult computational cores <u>IP Cores</u> – Use IP cores provided by vendor for better productivity Determine maximum amount of logic resources & maximum amount of special on-chip resources (e.g. DSP multipliers), for device

Determine resource utilization & maximum achievable frequency for one instance of core using DSP resources; repeat using logic-only resources

Determine number of simultaneous cores, *Ops*_{DSP}, that can be instantiated until all DSP resources are exhausted; repeat for logic-only resources to determine *Ops*_{LOGIC}

Achievable frequency factorievable is lower of frequencies determined in step 2 above

Iterate through combinations of DSP and logic-only cores to find an equal balance of addition and multiplication operations

Metric Methodology

- CD for FMC and coarse-grained **RMC** devices $CD_{bit} = f \times \left| \sum W_i \times N_i \right|$
 - Bit-level
 - o Integer
 - Floating-point

- Calculated using CD for each level of parallelism and dividing by power consumption at that level of parallelism
- CDW is critical metric for HPEC systems

For all RMC

 Power scales linearly with resource utilization

For FPGAs

- Vendor tools (PowerPlay, Xpower) used to estimate power for maximum LUT. FF, block memory, and DSP utilization at maximum freq.
- Maximum power is scaled by ratio of achievable frequency to maximum freq.

For all FMC

• Use fixed, maximum power from vendor documentation

 W_i - width of element type *i*

N_i - # of elements of type *i*, or # of instructions that can be issued simultaneously

f - clock frequency

CPI_i - cycles per instruction for element i

$CD_{int/FP} = f \times \sum_{i} \frac{N_i}{CPI_i}$

Metric Methodology

- Internal Memory Bandwidth (IMB)
 - Overall application performance may be limited by memory system
 - Cache-based systems (CBS)
 - Separate metrics for each level of cache
 - Calculate bandwidth over range of hit rates
 - Block-based systems (BBS)
 - Calculate bandwidth over a range of achievable frequencies
 - For fixed-frequency devices, IMB is constant
 - Assume most parallel configuration (wide & shallow configuration of blocks)
 - Use dual-port configuration when available

 $IMB_{cache} = \% hitrate \times \sum_{i} \frac{N_i \times P_i \times W_i \times f_i}{8 \times CPA_i}$

$$IMB_{block} = \sum_{i} \frac{N_{i} \times P_{i} \times W_{i} \times f_{i}}{8 \times CPA_{i}}$$

%hitrate - Hit-rate scale factor

 N_i - # of blocks of element *i*

 P_i - # of ports or simultaneous accesses supported by element *i*

 W_i - width of datapath

 f_i - memory operating frequency, variable for FPGAs

CPA_i - # of clock cycles per memory access

Computational Density

130 nm			Bit-l	evel	16-bi	t Int.	32-bi	t Int.	SP	FP	DPFP	
00	_	Device	Raw	Sustain.	Raw	Sustain.	Raw	Sustain.	Raw	Sustain.	Raw	Sustain.
90 nm		Arrix FPOA	6144	6144	384	384	192	192				
65 nm		ECA-64	2176	2176	13	13	6	6				
45 nm		MONARCH	2048	2048	65	65	65	65	65	65		
40 nm		Stratix-II S180	63181	63181	442	442	123	123	53	53	11	11
		Stratix-III SL340	154422	154422	933	918	213	213	96	96	26	26
RMC		Stratix-III SE260	119539	119539	817	778	204	204	73	73	22	22
MIL		Stratix-IV SE530	243866	243866	990	766	312	312	171	171	88	88
		TILE64	4608	4608	240	240	144	144				
		Virtex-4 LX200	89952	89952	357	116	66	42	68	46	16	16
		Virtex-4 SX55	29184	29184	365	110	71	40	31	31	7	7
		Virtex-5 LX330T	150163	150163	606	300	131	122	119	116	26	26
		Virtex-5 SX95T	48435	48435	599	226	221	92	82	82	15	15
		Am2045	8064	8064	504	504	252	252				
		Atom N270	307	307	14	14	8	8	8	8	5	5
		Cell BE	4096	4096	205	205	115	115	205	205	19	19
F MC		CSX600	1536	1536	24	24	24	24	24	24	24	24
		MPC7447	352	352	11	11	11	11	11	11	11	11
		MPC8640D	576	576	34	34	18	18	12	12	6	6

- Maximum memory-sustainable CD is shown above (in GOPs)
- CD scales with parallel operations
- Various devices may have their highest CDs at different levels of parallelism
- Top CD performers are highlighted
- RMC devices perform best for bit-level & integer ops, FMC for floating-point
- Memory-sustainability issues seen when many, small registers are needed

Bit-level CDW

- RMC devices (specifically FPGAs) far outperform FMC devices
 - High bit-level CD due to fine-grained, LUT-based architecture
 - Low power
 - Power scaling with parallelism (area)

- EP4SE530 (Stratix-IV) is best overall
- 65 nm FPGAs are all strong performers
- V4 LX200 top performer of 90 nm devices
- Coarse-grained devices (both RMC & FMC) show poor performance

16-bit Integer CDW

- RMC devices outperform FMC
 - Low power
 - Power scaling with parallelism (area)
 - Requires algorithms that can take
 advantage of numerous parallel operations
 - Ambric (130 nm) shows promising prelim. results despite older process

- Virtex-4 SX55 is best performer in 90 nm class
- Strong performance from ECA-64 due to extremely low power consumption (one Watt at full utilization), despite low CD
- FPOA gives good, moderate performance due to high CD, but with higher power requirements
- Virtex-5 SX95T (65 nm) is best overall with Stratix-IV EP4SE530 (40 nm) a close second

32-bit Integer CDW

• RMC devices outperform FMC

- Low power
- Power scaling with parallelism (area)
- Requires algorithms that take advantage of numerous parallel operations
- Ambric (130 nm) shows promising prelim. results despite older process

- For high levels of exploitable parallelism, the Virtex-4 SX55 is best in 90 nm class
- Strong performance from ECA-64 due to extremely low power consumption
- Virtex-5 SX95T (65 m) is best overall
- SX devices benefit from low power consumption due to high DSP-to-logic ratio

SPFP CDW

- RMC devices (specifically FPGAs) outperform FMC devices
 - Low power, especially FPGAs with large amount of DSP multiplier resources (consume less power than LUTs)
 - Power scaling with parallelism (area)
 - Devices not intended for floating-point computation (i.e. not designed to compete in current form) are excluded here (e.g. FPOA, TILE, ECA, Ambric)

- CSX600 modest due to average CD, low power
- Virtex-4 SX55 leads 90 nm due to power advantage
- Cell (90 nm) has large CD advantage, but very high power consumption hampers CDW capability
- Virtex-5 SX95T (65 nm) has clear CDW advantage due to relatively high achievable frequency, high level of DSP resources, low power consumption of DSPs

Note: we expect Altera FP CDW scores to improve when their new Floating-Point Compiler is used in place of current FP cores

DPFP CDW

RMC devices (specifically FPGAs) outperform most FMC devices

- Low power, especially FPGAs with large amount of DSP multiplier resources (consume less power than LUTs)
- Power scaling with parallelism (area)
- Devices not intended for floating-point computation are again excluded

- CSX600 (130 nm) performs better than several FPGAs due to high CD and moderate power
- SX devices (90 & 65 nm) perform well due to DSP power advantage, relatively high achievable frequencies
- *Stratix-IV EP4SE530 (40 nm) clear overall leader due to large fabric (DPFP cores are area-intensive)*

Note: we expect Altera FP CDW scores to improve when their new Floating-Point Compiler is used in place of current FP cores

Internal Memory Bandwidth

- Many parallel paths to memory blocks
- Can pack operands into wide data structures
- Support for dual-port memories
- Outperforms cache-based devices even on low frequency designs
- IMB is constant for block-based fixed-frequency devices

- Cache-based systems (CBS)
 - MPC7447, MPC8640D perform poorly relative to most BBS devices
 - TILE64 (64 caches) does not compete with FPGAs
- Block-based systems (BBS)
 - FPGAs dominate this metric
 - Stratix-IV (40 nm) leads for higher-frequency designs, Virtex-5 leads for lower-frequency designs

Future Work

CI = Arithmetic Operations Memory Operations

• Use CD, IMB, and CI metrics to correlate device characteristics and application characteristics

For I = 512; s = 7; Computational Intensity = 8.9

For I = 512; s = 15; Computational Intensity = 8.5

CFAR - Computational Intensity = 2.1

Radix-4 FFT - Computational Intensity = 4.7

Direct Form FIR - Computational Intensity = 4.1

Matrix Multiply - Computational Intensity = 2.0

Summary

	Best Overall	Best RMC	Best FMC	Best of 90 nm & larger proc.
Bit-level CDW	EP4SE530	EP4SE530	Am2045	V4 LX200
16-bit Integer CDW	V5 SX95T	V5 SX95T	Am2045	V4 SX55
32-bit Integer CDW	V5 SX95T	V5 SX95T	Am2045	V4 SX55
SPFP CDW	V5 SX95T	V5 SX95T	Cell	V4 SX55
DPFP CDW	EP4SE530	V5 SX95T	CSX600	CSX600
IMB	EP4SE530	EP4SE530	Am2045	EP2S180

Conclusions

• RC Taxonomy & Reconfigurability Factors

- Provides framework for comparing RMC & FMC devices
- Develops concepts and terminology to define characteristics of various computing device technologies

• CD and CDW Metrics

- Basis to compare devices on computational performance & power
 - Large variations in resulting data when applied across disparate device suite
 - FPGAs with many low-power DSPs tended to have very high CDW scores, even for single-precision, floating-point operations
- With increasing importance of energy, <u>CDW</u> becomes a critical metric

• IMB Metric

- Basis to compare devices for on-chip memory access capabilities
- Block-based systems tended to outperform cache-based systems
- Architecture reformation & Moore's law
 - Explicit parallelism allows for full utilization of process technology & transistor count improvements

Acknowledgements

This work was made possible by

- NSF I/UCRC Program (Center Grant EEC-0642422)
- CHREC members (31 industry & govt. partners)
- Altera Corporation (equipment, tools)
- MathStar Incorporated (equipment, tools)
- Xilinx Incorporated (equipment, tools)

Questions?

References

- Altera Corp., *Stratix II Device Handbook*, 2007.
- Altera Corp., Stratix III Device Handbook, 2007.
- Altera Corp., Stratix IV Device Handbook, 2008.
- Ambric, Inc., "Technology Overview," http://www.ambric.com/technology/technology-overview.php.
- M. Barton, "Tilera's Cores Communicate Better," Microprocessor Report, Nov. 2007.
- T. Chen, et al., "Cell Broadband Engine Architecture and its First Implementation--A Performance View," *IBM Journal of Research & Development*, vol. 51, no. 5, Sept. 2007, pp. 559-572.
- ClearSpeed Technology PLC, CSX600 Architecture Whitepaper, 2007.
- A. DeHon. Reconfigurable Architectures for General Purpose Computing, PhD thesis, MIT AI Lab, Sept. 1996.
- Element CXI, Inc., ECA-64 Device Architecture Overview, 2007.
- Element CXI, Inc., ECA-64 Product Brief, 2007.
- Freescale Semiconductor, Inc., Altivec Technology Programming Environments Manual Rev. 3, 2006.
- Freescale Semiconductor, Inc., MPC7450 RISC Microprocessor Family Reference Manual Rev. 5, 2005.
- Freescale Semiconductor, Inc., MPC8641D Integrated Host Processor Family Reference Manual Rev. 2, 2008.
- T. Halfhill "Ambric's New Parallel Processor," Microprocessor Report, Oct. 2006.
- Intel Corp., Intel 64 and IA-32 ArchitecturesSoftware Developer's Manual Volume 1: Basic Architecture, Apr. 2008.
- Intel Corp., *Mobile Intel Atom Processor N270 Single Core Datasheet*, May 2008.
- Mathstar, Inc., Arrix Family FPOA Architecture Guide, 2007.
- Mathstar, Inc., Arrix Family Product Data Sheet & Design Guide, 2007.
- Raytheon Company, World's First Polymorphic Computer MONARCH, 2006.
- D. Strenski, "FPGA Floating Point Performance -- a pencil and paper evaluation," HPCWire, Jan. 12, 2007, http://www.hpcwire.com/hpc/1195762.html.
- Tilera Corp., TILE64 Processor Product Brief, 2008.
- D. Wang, "ISSCC 2005: the Cell Microprocessor," Real World Technologies, Feb. 2005, retrieved Jan. 2008, http://www.realworldtech.com/page.cfm?ArticleID=rwt021005084318&p=2.
- Xilinx, Inc., Virtex-4 Family Overview, 2007.
- Xilinx, Inc., Virtex-5 Family Overview, 2008.

Devices Studied

FMC Device Features

	Device	Cores	Instructions Issued/Core	Datapath Width (bits)	Frequency (MHz)	Power (W)	On-chip Memory
	Am2045	360	3+1	32	350	15	45 brics ea. w/ 8 SRAM banks
130 nm	CSX600	1+96	1	64	250	10	I, D caches, 96 32-bit banks SRAM
	MPC7447	1+1	1+2 Int, 2+1 SPFP, 3 DPFP	32/128	1000	10	L1-I, L1-D: 4 words/access @ 2 cycles/access, L2: 8 words/access @ 9 cycles/access
90 nm	Cell BE	1+8	2+1	64/128	3200	70	L1-I, L1-D, L2 (PPE), 8 128-bit LS banks (SPEs)
	MPC8640D	2+2	, 1+2 Int, 2+1 SPFP, 3 DPFP	32/128	1000	14	Ea. core: L1-I, L1-D: 4 words/access @ 2 cycles/access, L2: 8 words/access @ 11.5 cycles/access
45 nm	Atom N270	1+1	1+1	64/128	1600	3.3	Unknown

FPGA Device Features

	Device	LUTs	DSPs	Max. Frequency (MHz)	Min. Power (W)	Max. Power (W)	On-chip Memory
90 nm	Stratix-II EP2S180	143,520	768	500	3.26	30	9 128-bit dual port blocks @ 420 MHz, 768 32-bit dual port blocks @ 550 MHz, 930 16-bit dual port blocks @ 500 MHz
	Virtex-4 SX55	49,152	512	500	1	10	48 72-bit dual port blocks @ 600 MHz, 864 32-bit dual port blocks @ 580 MHz,
	Virtex-4 LX200	178,176	96	500	1.27	23	48 72-bit dual port blocks @ 600 MHz, 1040 32-bit dual port blocks @ 580 MHz,
	Stratix-III EP3SE260	203,520	768	550	2.11	25	320 32-bit dual port blocks @ 500 MHz
65 mm	Stratix-III EP3SL340	270,400	576	550	2.83	32	336 32-bit dual port blocks @ 500 MHz
65 nm	Virtex-5 SX95T	58,800	640	550	1.89	10	488 72-bit dual port blocks @ 550 MHz
	Virtex-5 LX330T	207,360	192	550	3.43	27	648 72-bit dual port blocks @ 550 MHz
40 nm	Stratix-IV EP4SE530	424,960	1,024	600	3.55	39	64 72-bit dual port blocks @ 600 MHz, 1280 32-bit dual port blocks @ 600 MHz,

Devices Studied

Other RMC Device Features

	Device	PE	Frequency (MHz)	Min. Power (W)	Max. Power (W)	On-chip Memory
90 nm RMC	ElementCXI ECA-64	64 16-bit hetero. elements	200	0.05	1	4 16-bit memory units, 5 simultaneous operations
	Mathstar Arrix FPOA	256 16-bit ALUs, 64 16x16 MACs	1000	18.82 @ 25%	46.25 @ 100%	80 32-bit dual port banks @ 1 GHz, 12 72-bit single port banks @ 500 MHz
	Raytheon MONARCH	6 32-bit RISC processor cores, 12 256-bit Arithmetic Clusters	333	6.7	33	31 memory clusters, 4 memories/cluster, dual ported, 32 bits wide
	Tilera TILE64	64 32-bit 3 issue VLIW processor cores	750	5.11	28	64 32-bit L1 I, D caches, Unified L2 cache @ 7 cycle access

FPGA Achievable Frequencies

Device	Bit-Op	16-bit Int.	32-bit Int.	SPFP	DPFP
Stratix-II EP2S180	500	420	410	286	148
Stratix-III EP3SE260	550	273	400	329	195
Stratix-III EP3SL340	550	273	400	329	195
Stratix-IV EP4SE530	550	243	291	241	184
Virtex-4 SX55	500	249	344	274	185
Virtex-4 LX200	500	249	344	274	185
Virtex-5 SX95T	550	378	463	357	237
Virtex-5 LX330T	550	378	463	357	237

Stratix-III &-IV Bit-Op frequency limited by max DSP frequency