
Simple, Efficient, Portable Decomposition of Simple, Efficient, Portable Decomposition of
Large Data SetsLarge Data Sets

William Lundgren (William Lundgren (wlundgren@gedae.comwlundgren@gedae.com, Gedae), , Gedae),
David Erb (IBM), Max Aguilar (IBM), Kerry Barnes David Erb (IBM), Max Aguilar (IBM), Kerry Barnes

(Gedae), James Steed (Gedae)(Gedae), James Steed (Gedae)
HPEC 2008HPEC 2008

mailto:wlundgren@gedae.com

IntroductionIntroduction

The study of High Performance Computing is the study ofThe study of High Performance Computing is the study of
–– How to move data into fast memoryHow to move data into fast memory
–– How to process data when it is thereHow to process data when it is there

Multicores like Cell/B.E. and Intel Core2 have hierarchical Multicores like Cell/B.E. and Intel Core2 have hierarchical
memoriesmemories
–– Small, fast memories close to the SIMD ALUsSmall, fast memories close to the SIMD ALUs
–– Large, slower memories offchipLarge, slower memories offchip

Processing large data sets requires decompositionProcessing large data sets requires decomposition
–– Break data into pieces small enough for the local storageBreak data into pieces small enough for the local storage
–– Stream pieces through using multibufferingStream pieces through using multibuffering

22

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

Cell/B.E. Memory HierarchyCell/B.E. Memory Hierarchy

Each SPE core has a 256 kB local storageEach SPE core has a 256 kB local storage
Each Cell/B.E. chip has a large system memoryEach Cell/B.E. chip has a large system memory

33

SPE

PPE

EIB

Cell/B.E. Chip

LS

SYSMEM

Bridge

EIB

Cell/B.E. Chip

SYSMEM Duplicate or
heterogeneous

Subsystems

PPEBridge

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

Intel Quad Core Memory Intel Quad Core Memory
HierarchyHierarchy

Caching on Intel and other SMP multicores also creates Caching on Intel and other SMP multicores also creates
memory hierarchymemory hierarchy

44

System Bus

L1 Cache L1 Cache

Instruction
Units

Instruction
Units

Schedulers Schedulers

Load/
Store

ALUs Load/
Store

ALUs

L1 Cache L1 Cache

Instruction
Units

Instruction
Units

Schedulers Schedulers

Load/
Store

ALUs Load/
Store

ALUs

Optimization of Data MovementOptimization of Data Movement

Optimize data movement using softwareOptimize data movement using software
UpsideUpside
–– Higher performance possibilitiesHigher performance possibilities

DownsideDownside
–– Complexity beyond the reach of many programmers Complexity beyond the reach of many programmers

In analogy , introduction of Fortran and CIn analogy , introduction of Fortran and C
–– The CPU was beyond the reach of many potential software The CPU was beyond the reach of many potential software

developersdevelopers
–– Fortran and C provide automatic compilation to assemblyFortran and C provide automatic compilation to assembly
–– Spurred the industrySpurred the industry

55

Multicores require the introduction of fundamentally new automation.

Gedae BackgroundGedae Background

We can understand the problem by considering the We can understand the problem by considering the
guiding principles of automation that effectively guiding principles of automation that effectively

addresses the problem.addresses the problem.

66

Structure of Gedae Structure of Gedae

77

SW / HW
System

Hardware
Model

Compiler

Implementation
Specification

Functional
Model

Developer

Analysis Tools

Threaded
Application

Thread
Manager

Presenter
Presentation Notes
The compiler is the central location of the automation. It decomposes into components that addresses the many components of multithreaded applications – such as memory, dynamic behavior, concurrency control, deadlock, and data movement. The issue of memory is itself very complex. The interaction of these components – for example, memory buffer alignment and efficient data transfers – compounds the complexity.

The thread manager is required to handle dynamic behavior that can arise from reaction to external events or the varying nature of the data.

The hardware model is required so that new architectures don’t require re-engineering of the compiler.

The analysis tools are required to expose the structure and behavior of the application giving the developer the opportunity to optimize the implementation.

The functionality and implementation must be separate so that the software for one functional mode can be tuned based on the target architecture.

Compiler

Guiding Principle for Evolution of Guiding Principle for Evolution of
Multicore SW Development ToolsMulticore SW Development Tools

88

Functional
model

Architecture-
specific details

Libraries
Implementation

specification
Implementation

Complexity

88

Presenter
Presentation Notes
The primary theme is in the blue arrows. One idea is to identify those things that limit the ability of the compiler to do its job. The functional model should be free of the architecture. The software should be fully crafted from the simplest components to implement the functional model as efficiently as possible. A second idea is to provide a language that allows the developer to easily express functional behavior. For example. if I want to reset software to switch among algorithms it is at best very tedious to implement the reset manually. So the concept of expression of functionality simply is not well expressed (sorry for the double use of express(ion)).

(((The more I think about this I think the core of the language is the data flow. Yes. I am coming back to calling it data flow because it preserves the concept of data locality. Other things are not part of the data flow – such as reset and parameters. While we can press the block diagram into service – and some of it is good and necessary – it is better to rely on other mechanisms for expressing those concepts. The question I ask. is there any data flow nature to parameters? Triggers are a different story. The reason triggers are important is because the ordering is important because of side effects. It is for that reason that Elis’ job is made more difficult. I think understanding what Elis has done and what behavior he had to implement by carefully crafting the graph. I feel like I am inadequately describing the issue. For example. if I want to set some characteristics of a widget – say text color – then I might have to put a primitive to hold the color until the box is triggered by the arrival of the widget. This seems an incidental part of the software – not something I would think of as part of my functional model. For example. I would say I want to set the color of the widget on initialization (or reset). The reset should be implemented by Gedae. I think when Clay and I discussed the concept – I remember it very well – we were thinking about how we could implement behavior rather than how we could express behavior. I can implement any behavior with C – including algorithm reset – but I can state a requirement to reset (express functionality) using Gedae’s segment markers.)))

The left side lists the characteristics required to achieve the guiding principles. For example. I must be able to specify algorithm reset and reset for stateful components but not be required to implement it. Parameters that are asynchronously and infrequently changed should not be implemented tediously with data flow – though they can be. The compiler cannot achieve full efficiency if the behavior is hidden from it. For the library of essential services. the hardware model should specify its preferences – such as memory alignment or stride by one etc. – if it cannot achieve the preference it should directly call the required function. This puts more burden on the developer of the optimized library – but not really. They don’t have to build the conditionals inside the functions. They just have to build the functions with the appropriate name. I think this same concept should be extended to send / recvs. (I think of this as limiting the conditionals in the library of essential services.) We able to further simplify the construction of optimized libraries by inserting appropriate operators for various numbers / patterns of operators. This might explode because of the combinatorics and may not be necessary as we evolve SFG.

The right side lists problems encountered when the guiding principles are not fully achieved.

If a users infers a behavior using the available language the compiler is unable to insure the intended behavior is maintained through the compilation process and will have less opportunity to optimize and automate because it will not know if the optimization or automation will disrupt the behavior. One of the best examples of this is exclusive branch/merge pairs. Memory cannot be shared among the branches unless it is known that only one thread will be active for each token.

Language Language –– Invariant Invariant
FunctionalityFunctionality

Functionality must be free of implementation policyFunctionality must be free of implementation policy
–– C and Fortran freed programmer from specifying details of movingC and Fortran freed programmer from specifying details of moving

data between memory, registers, and ALUdata between memory, registers, and ALU
–– Extend this to multicore parallelism and memory structureExtend this to multicore parallelism and memory structure

The invariant functionality does not include multicore concerns The invariant functionality does not include multicore concerns
likelike
–– Data decomposition/tilingData decomposition/tiling
–– Thread and task parallelismThread and task parallelism

Functionality must be easy to expressFunctionality must be easy to express
–– Scientist and engineers want a thinking toolScientist and engineers want a thinking tool

Functional expressiveness must be completeFunctional expressiveness must be complete
–– Some algorithms are hard if the language is limitedSome algorithms are hard if the language is limited

99

Presenter
Presentation Notes
The part that amazes me here is the demand for language features. There just aren’t many applications that don’t require an broad set of language features. Data flow by itself only supports a tiny fraction of sensor processing applications. It doesn’t have any fundamental support for image processing.

Language Features for Language Features for
Expressiveness and InvarianceExpressiveness and Invariance
Stream data (time based data) *Stream data (time based data) *
Stream segments with software reset on segment boundaries *Stream segments with software reset on segment boundaries *
Persistent data Persistent data –– extends from state* to databases extends from state* to databases ‡‡

Algebraic equations (HLL most similar to Mathcad) Algebraic equations (HLL most similar to Mathcad) ‡‡

Conditionals Conditionals ††

Iteration Iteration ‡‡

State behavior State behavior ††

Procedural *Procedural *
* These are mature language features* These are mature language features
†† These are currently directly supported in the language but willThese are currently directly supported in the language but will continue to evolvecontinue to evolve
‡‡ Support for directly expressing algebraic equations and iteratiSupport for directly expressing algebraic equations and iteration. while possible to implement in on. while possible to implement in

the current tool, will be added to the language and compiler in the current tool, will be added to the language and compiler in the next major release. the next major release.
Databases will be added soon after. Databases will be added soon after.

1010

Presenter
Presentation Notes
Most of the applications built in Gedae require several or most of these language features.

Library FunctionsLibrary Functions

Black box functions hide essential functionality from compilerBlack box functions hide essential functionality from compiler
Library is a vocabulary with an implementationLibrary is a vocabulary with an implementation
conv(float *in, float *out, int R, int C, conv(float *in, float *out, int R, int C,

float *kernel, int KR, int KC);float *kernel, int KR, int KC);

Algebraic language is a specificationAlgebraic language is a specification
range i=0..Rrange i=0..R--1, j=0..C1, j=0..C--1, i1=0..KR1, i1=0..KR--1, j1=0..KC1, j1=0..KC--1;1;
out[i][j] += in[i+i1][j+j1] * kernel[i1][j1];out[i][j] += in[i+i1][j+j1] * kernel[i1][j1];

1111

Other examples:
As[i][j] += B[i+i1][j+j1]; /* kernel of ones */
Ae[i][j] |= B[i+i1][j+j1]; /* erosion */
Am[i][j] = As[i][j] > (Kz/2); /* majority operation */

Presenter
Presentation Notes
The problem here is that a library must be a do all (complexity – size and efficiency), is constrained to one place in the code (optimization schemes limited) , and restricts access of the developer and compiler.

The library also has the problem of completeness. The number of data reorg schemes is huge – and many of them are important. Compound that with optimization for each new architecture and the task is daunting. If the language can express, the compiler can optimize and the developer can observe and tweak, then the task is manageable. Though the task of building the compiler is quite demanding!

Library FunctionsLibrary Functions

A simple example of hiding essential functionality is tile A simple example of hiding essential functionality is tile
extraction from a matrixextraction from a matrix
–– Software structure changes based on data size and target Software structure changes based on data size and target

architecturearchitecture
–– Library hides implementation from developer and compilerLibrary hides implementation from developer and compiler

1212

Image in
System
Memory

Transfer
Data

Reorg

Process
Tile

Tile
Contiguous
in SPE LS

…Back to
System
Memory

CPU Data
Reorg

Process
Tile

Tile
Contiguous

in PPE cache
…Back to
System
Memory

Option
A

Option
B

Presenter
Presentation Notes
The problem here is that a library must be a do all (complexity – size and efficiency), is constrained to one place in the code (optimization schemes limited) , and restricts access of the developer and compiler.

The library also has the problem of completeness. The number of data reorg schemes is huge – and many of them are important. Compound that with optimization for each new architecture and the task is daunting. If the language can express, the compiler can optimize and the developer can observe and tweak, then the task is manageable. Though the task of building the compiler is quite demanding!

Features Added to Increase Automation Features Added to Increase Automation
of Example Presented at HPEC 2007of Example Presented at HPEC 2007

1313

Presenter
Presentation Notes
We will explore these language features by looking at a simple example – distributed matrix multiply.

New FeaturesNew Features

New language features and compiler functionality provide New language features and compiler functionality provide
increased automation of hierarchical memory managementincreased automation of hierarchical memory management
Language featuresLanguage features
–– Tiled dimensionsTiled dimensions
–– IterationIteration
–– Pointer port typesPointer port types

Compiler functionsCompiler functions
–– Application of stripmining to iterationApplication of stripmining to iteration
–– Inclusion of closeInclusion of close--toto--thethe--hardware List DMA to get/put tileshardware List DMA to get/put tiles
–– MultibufferingMultibuffering
–– Accommodation of memory alignment requirements of SPU and Accommodation of memory alignment requirements of SPU and

DMADMA

1414

Matrix Multiplication AlgorithmMatrix Multiplication Algorithm

1515

Presenter
Presentation Notes
We will explore these language features by looking at a simple example – distributed matrix multiply.

Distributed AlgorithmDistributed Algorithm

Symbolic ExpressionSymbolic Expression
A[i][j] += B[i][k]*C[k][j]A[i][j] += B[i][k]*C[k][j]

Tile operation for distribution Tile operation for distribution
and small memoryand small memory
ii-->p,i2; j>p,i2; j-->j1,j2; k>j1,j2; k-->k1,k2>k1,k2
[p][j1]A[i2][j2] += [p][j1]A[i2][j2] +=

[p][k1]B[i2][k2] *[p][k1]B[i2][k2] *

[k1][j1]C[k2][j2][k1][j1]C[k2][j2]

Process p sum spatially and k1 Process p sum spatially and k1
and j1 sums temporallyand j1 sums temporally
Accumulate in local store, then Accumulate in local store, then
transfer result tiles back to transfer result tiles back to
system memorysystem memory

1616

1,1 1,21,0 Mul
Acc

1,2

2,2

0,2

Stream tiles

1,11,2 1,0

1,22,2 0,2

k1 = 0,1,2

Tiles contiguous
in SPE local store

1,2

System
Memory

SPE Processing

Data Partitioning by ProcessorData Partitioning by Processor

Each processor computes different set of rows of Each processor computes different set of rows of ““aa””

1717

Blue translucent boxes indicate these boxes
will migrate to implementation and compiler

System
Memory

Data for Processor 0
Data for Processor 1

Data for Processor 7

…

Data for Processor 2

Temporal Data PartitioningTemporal Data Partitioning

Fetch tiles from system memoryFetch tiles from system memory
–– Automatically incorporate DMA List transferAutomatically incorporate DMA List transfer

Compute the sum of the tile matrix multipliesCompute the sum of the tile matrix multiplies
Reconstitute result in system memoryReconstitute result in system memory

1818

System
Memory

Data for Processor 0

Data for Processor 1

…

Stripmining and MultibufferingStripmining and Multibuffering

Stripmining this algorithm will process the Stripmining this algorithm will process the
matrix tilematrix tile--byby--tile instead of all at oncetile instead of all at once
–– Enabling automated stripming adds this to the Enabling automated stripming adds this to the

compilationcompilation
Multibuffering will overlap DMA of next tile with Multibuffering will overlap DMA of next tile with
processing of current tileprocessing of current tile
–– Multibuffering table Multibuffering table

allows this to be turnedallows this to be turned
off and onoff and on

1919

Analysis of Complexity and Analysis of Complexity and
PerformancePerformance

13 kernels13 kernels
–– Each kernel has 10 lines of code or less in its Apply methodEach kernel has 10 lines of code or less in its Apply method
–– Future version will be one kernel with 1 line of code defined usFuture version will be one kernel with 1 line of code defined using ing

algebraic expressionalgebraic expression
Automation ratio (internal kernels added / original kernels / Automation ratio (internal kernels added / original kernels /
processors)processors)
–– Internal kernels added: 276Internal kernels added: 276
–– Current ratio: 2.65 Current ratio: 2.65
–– Future ratio: 36Future ratio: 36

Runs at 173.3 GFLOPs on 8 SPEs for large matricesRuns at 173.3 GFLOPs on 8 SPEs for large matrices
–– Higher rates possible using block data layout, up to 95% max Higher rates possible using block data layout, up to 95% max

throughput of processorthroughput of processor

2020

Polar Format Synthetic Aperture Radar Polar Format Synthetic Aperture Radar
AlgorithmAlgorithm

AlgorithmAlgorithm

complex out[j][i] pfa_sar(complex in[i][j],complex out[j][i] pfa_sar(complex in[i][j],
float Taylor[j], complex Azker[i2]) {float Taylor[j], complex Azker[i2]) {

t1[i][j] = Taylor[j] * in[i][j]t1[i][j] = Taylor[j] * in[i][j]
rng[i] = fft(t1[i]); /* FFT of rows */rng[i] = fft(t1[i]); /* FFT of rows */
cturn[j][i] = rng[i][j];cturn[j][i] = rng[i][j];
adjoin[j][i2](t) = i2 < R ? cturn[i2][i](t) : adjoin[j][i2](t) = i2 < R ? cturn[i2][i](t) :

cturn[j][i2cturn[j][i2--R](tR](t--1) ;1) ;
t2[j] = ifft(adjoin[j]);t2[j] = ifft(adjoin[j]);
t3[j][i2] = Azker[i2] * t2[j][i2];t3[j][i2] = Azker[i2] * t2[j][i2];
azimuth[j] = fft(t3[j]);azimuth[j] = fft(t3[j]);
out[j][i] = azimuth[j][i];out[j][i] = azimuth[j][i];

}}

2222

Analysis of Code Complexity for Analysis of Code Complexity for
Benchmark From HPEC 2007Benchmark From HPEC 2007

33 kernels33 kernels
–– 7 tiling kernels specially crafted for this application7 tiling kernels specially crafted for this application
–– 5 data allocation kernels specially crafted for this application5 data allocation kernels specially crafted for this application

DMA transfers between system memory and SPE local storage DMA transfers between system memory and SPE local storage
coded by hand using E librarycoded by hand using E library
Multibuffering is incorporated into the kernels by handMultibuffering is incorporated into the kernels by hand
The tiling kernels are very complexThe tiling kernels are very complex
–– 80 to 150 lines of code each80 to 150 lines of code each
–– 20 to 100 lines of code in the Apply method20 to 100 lines of code in the Apply method

A productivity tool should do better!A productivity tool should do better!

2323

Analysis of Code Complexity and Analysis of Code Complexity and
PerformancePerformance

23 kernels23 kernels
Each kernel has 10 lines of code or less in its Apply methodEach kernel has 10 lines of code or less in its Apply method
Automation ratioAutomation ratio
–– Internal kernels added: 1308Internal kernels added: 1308
–– Current ratio: 7.11Current ratio: 7.11
–– Future ratio: 20.67Future ratio: 20.67

Performance:Performance:

2424

Algorithm
GFLOPS GB/s

2007 2008 2007 2008
TOTAL SAR 81.1 86.4 16.9 18.0

Backprojection Synthetic Aperture Radar Backprojection Synthetic Aperture Radar
AlgorithmAlgorithm

Backprojection Backprojection –– the Techniquethe Technique

2626

Flight
path

in[p][f] /* pulse returns*/ 2D Image

(x,y) /* image
element indices */

r[p][x][y] /* range from
observation point
to image element*/

(xo[p],yo[p],zo[p])
/* observation
point indices */

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

2727

Presenter
Presentation Notes
Mostly for reference to support line count number in next page. The appendix explains the lines a bit more for reference

Comparison of Manual vs. Comparison of Manual vs.
Automated ImplementationAutomated Implementation

Automation ratioAutomation ratio
–– Internal kernels added: 1192Internal kernels added: 1192
–– Current ratio: 2.26Current ratio: 2.26
–– Future ratio: 4.13Future ratio: 4.13

Processing time for manual results were reported at IEEE Processing time for manual results were reported at IEEE
RADAR 2008 conferenceRADAR 2008 conference

Processing time for automated memory transfers with tilingProcessing time for automated memory transfers with tiling

2828

Npulses 256 512 1024 2048
Time (mSec) 35.7 285.1 2,368.8 18,259.4

Npulses 256 512 1024 2048
Time (mSec) 35.1 280.6 2242.3 17,958.2

Summary and RoadmapSummary and Roadmap

GedaeGedae’’s tiling language allows the compiler to manage s tiling language allows the compiler to manage
movement of data through hierarchical memorymovement of data through hierarchical memory
–– Great reduction in code size and programmer effortGreat reduction in code size and programmer effort
–– Equivalent performanceEquivalent performance

Gedae Symbolic Expressions will take the next step forward in Gedae Symbolic Expressions will take the next step forward in
ease of implementationease of implementation
–– Specify the algorithm as algebraic codeSpecify the algorithm as algebraic code
–– Express the data decomposition (both spatially and temporally)Express the data decomposition (both spatially and temporally)
–– The compiler handles the restThe compiler handles the rest

2929

End of PresentationEnd of Presentation

Appendix: GedaeAppendix: Gedae’’s Future Direction s Future Direction
Towards Full AutomationTowards Full Automation

Implementation Tools Implementation Tools –– Automatic Automatic
ImplementationImplementation

www.gedae.comwww.gedae.com 3232

Threaded
Application

Hardware Model
with

Characterization

Compiler

Functional
Model

Rule Based
Engine

Analysis
Tools++

Software
Characterizatio
n on HW Model

Developer

Implementation
Specification

SW / HW
System

Thread
Manager

3232

Appendix: Cell/B.E. Architecture Details Appendix: Cell/B.E. Architecture Details
and Tiled DMA Characterizationand Tiled DMA Characterization

Cell/B.E Compute Capacity and Cell/B.E Compute Capacity and
System Memory BandwidthSystem Memory Bandwidth

Maximum flop capacity Maximum flop capacity -- 204.8 Gflop/sec 32 bit (4 byte data)204.8 Gflop/sec 32 bit (4 byte data)
–– 3.2 GHz * 8 flop/SPU * 8 SPU3.2 GHz * 8 flop/SPU * 8 SPU

Maximum memory bandwidth Maximum memory bandwidth –– 3.2 GWords/sec3.2 GWords/sec
–– 25.6 / 4 / 2 words / function / second25.6 / 4 / 2 words / function / second

25.6 GB/sec 25.6 GB/sec
4 bytes/word4 bytes/word
2 words/function (into and out2 words/function (into and out--of memory)of memory)

Ideal compute to memory ratio Ideal compute to memory ratio –– 64 flops per floating point data 64 flops per floating point data
valuevalue
–– 204.8 / 3.2 204.8 / 3.2

3434

Practical IssuesPractical Issues

Degradation of memory bandwidthDegradation of memory bandwidth
–– Large transfer alignment and size requirements Large transfer alignment and size requirements

Need 16 byte alignment on source and destination addressesNeed 16 byte alignment on source and destination addresses
Transfer size must be multiple of 16 bytesTransfer size must be multiple of 16 bytes

–– DMA transfers have startup overheadDMA transfers have startup overhead
Less overhead to use list DMA than to do individual DMA transferLess overhead to use list DMA than to do individual DMA transferss

Degradation of compute capacityDegradation of compute capacity
–– Compute capacity is based on:Compute capacity is based on:

add:multiply ratio of 1:1add:multiply ratio of 1:1
4 wide SIMD ALU4 wide SIMD ALU

–– Filling and emptying ALU pipeFilling and emptying ALU pipe
–– Pipeline latencyPipeline latency
–– Data shuffling using SIMD unitData shuffling using SIMD unit

3535

32 64 128 256 512 1024 2048 4096
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

Throughput vs Tile Row Length

2
4
8

Tile Row Length (Bytes)

Th
ro

ug
hp

ut
 (G

by
te

s/
se

c)

Procs

(Times are measured within Gedae)

Effect of Tile Size on ThroughputEffect of Tile Size on Throughput

Appendix: Polar Format SAR Description Appendix: Polar Format SAR Description
and Flow Graph Specificaitonand Flow Graph Specificaiton

Stages of SAR AlgorithmStages of SAR Algorithm

PartitionPartition
–– Distribute the matrix to multiple PEsDistribute the matrix to multiple PEs

RangeRange
–– Compute intense operation on the rows of the matrixCompute intense operation on the rows of the matrix

Corner TurnCorner Turn
–– Distributed matrix transposeDistributed matrix transpose

AzimuthAzimuth
–– Compute intense operation on the rows of [M(iCompute intense operation on the rows of [M(i--1) M(i)]1) M(i)]

ConcatenationConcatenation
–– Combine results from the PEs for displayCombine results from the PEs for display

3838

SimplificationsSimplifications

Tile dimensions specify data decompositionTile dimensions specify data decomposition
–– Input: stream float in[Rt:R][Ct:C]Input: stream float in[Rt:R][Ct:C]

–– Output: stream float out[Rt/N:R][Ct/N:C]Output: stream float out[Rt/N:R][Ct/N:C]

This is all the information the compiler needsThis is all the information the compiler needs
–– User specifies tile size to best fit in fast local storageUser specifies tile size to best fit in fast local storage
–– Compiler stripmines the computation to stream the data through Compiler stripmines the computation to stream the data through

the coprocessorsthe coprocessors

3939

Simplified Specification: RangeSimplified Specification: Range

4040

Simplified Specification: Corner Simplified Specification: Corner
TurnTurn

4141

Simplified Specification: Azimuth Simplified Specification: Azimuth

4242

KernelsKernels

Kernels are no more complex than the partitioning kernel Kernels are no more complex than the partitioning kernel
shown in the Matrix Multiply exampleshown in the Matrix Multiply example
Only difference is it partitions split complex data!Only difference is it partitions split complex data!

4343

Appendix: Backprojection SAR Symbolic Appendix: Backprojection SAR Symbolic
Expression Code AnalysisExpression Code Analysis

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

4545

Function
prototype

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

4646

Declare range variable
(iteraters) needed.

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

4747

Zero fill interpolation array
and then fill with input data.
Notice interpolation array is

4X the input array.

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

4848

Use FFT for pulse
compression resulting in
a 4X interpolation of the

data in the spatial domain.

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

4949

Calculate the range from
every point in the output

image to every pulse
observation point.

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF * 4;rstart[p]) * 2 * DF * 4;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

5050

Calculate the phase
shift from every point in

the output image to
every pulse observation

point.

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) *2 * DF / 4;rstart[p]) *2 * DF / 4;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

5151

Calculate the range bin
corresponding to the

range of the image point
from the observation point.

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

5252

Calculate the linear
interpolation weights since

range will not in center of bin.

AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1, y = Y1, y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / 4;rstart[p]) * 2 * DF / 4;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

5353

Linearly interpolate return
and adjust for phase change

due to propagation time.

Analysis of Code Complexity and Analysis of Code Complexity and
PerformancePerformance

The graphs for the backprojection algorithm The graphs for the backprojection algorithm –– while much while much
simpler than the corresponding C code simpler than the corresponding C code –– are relatively complex are relatively complex
compared with the data movement. The complexity of the graph compared with the data movement. The complexity of the graph
is compounded by the 2 sources of complexity. There is great is compounded by the 2 sources of complexity. There is great
benefit to using symbolic expressions to replace block benefit to using symbolic expressions to replace block
diagrams as the input. The comparison is shown in an example diagrams as the input. The comparison is shown in an example
in the next chart.in the next chart.

5454

Comparison of Symbolic Comparison of Symbolic
Expression and Block DiagramExpression and Block Diagram

5555

w1[p][y][x] = rbin[p][y][x] - irbin[p][y][x];
w0[p][y][x] = 1 – w1[p][y][x];
out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x]) * phase[p][y][x];

	Simple, Efficient, Portable Decomposition of Large Data Sets
	Introduction
	Cell/B.E. Memory Hierarchy
	Intel Quad Core Memory Hierarchy
	Optimization of Data Movement
	Gedae Background
	Structure of Gedae
	Guiding Principle for Evolution of Multicore SW Development Tools
	Language – Invariant Functionality
	Language Features for Expressiveness and Invariance
	Library Functions
	Library Functions
	Features Added to Increase Automation of Example Presented at HPEC 2007
	New Features
	Matrix Multiplication Algorithm
	Distributed Algorithm
	Data Partitioning by Processor
	Temporal Data Partitioning
	Stripmining and Multibuffering
	Analysis of Complexity and Performance
	Polar Format Synthetic Aperture Radar Algorithm
	Algorithm
	Analysis of Code Complexity for Benchmark From HPEC 2007
	Analysis of Code Complexity and Performance
	Backprojection Synthetic Aperture Radar Algorithm
	Backprojection – the Technique
	Algorithm
	Comparison of Manual vs. Automated Implementation
	Summary and Roadmap
	End of Presentation
	Appendix: Gedae’s Future Direction Towards Full Automation
	Implementation Tools – Automatic Implementation
	Appendix: Cell/B.E. Architecture Details and Tiled DMA Characterization
	Cell/B.E Compute Capacity and System Memory Bandwidth
	Slide Number 35
	Effect of Tile Size on Throughput
	Appendix: Polar Format SAR Description and Flow Graph Specificaiton
	Stages of SAR Algorithm
	Simplifications
	Simplified Specification: Range
	Simplified Specification: Corner Turn
	Simplified Specification: Azimuth
	Kernels
	Appendix: Backprojection SAR Symbolic Expression Code Analysis
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Analysis of Code Complexity and Performance
	Comparison of Symbolic Expression and Block Diagram

