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IntroductionIntroduction

The study of High Performance Computing is the study ofThe study of High Performance Computing is the study of
–– How to move data into fast memoryHow to move data into fast memory
–– How to process data when it is thereHow to process data when it is there

Multicores like Cell/B.E. and Intel Core2 have hierarchical Multicores like Cell/B.E. and Intel Core2 have hierarchical 
memoriesmemories
–– Small, fast memories close to the SIMD ALUsSmall, fast memories close to the SIMD ALUs
–– Large, slower memories offchipLarge, slower memories offchip

Processing large data sets requires decompositionProcessing large data sets requires decomposition
–– Break data into pieces small enough for the local storageBreak data into pieces small enough for the local storage
–– Stream pieces through using multibufferingStream pieces through using multibuffering
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Cell/B.E. Memory HierarchyCell/B.E. Memory Hierarchy

Each SPE core has a 256 kB local storageEach SPE core has a 256 kB local storage
Each Cell/B.E. chip has a large system memoryEach Cell/B.E. chip has a large system memory
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Intel Quad Core Memory Intel Quad Core Memory 
HierarchyHierarchy

Caching on Intel and other SMP multicores also creates Caching on Intel and other SMP multicores also creates 
memory hierarchymemory hierarchy
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Optimization of Data MovementOptimization of Data Movement

Optimize data movement using softwareOptimize data movement using software
UpsideUpside
–– Higher performance possibilitiesHigher performance possibilities

DownsideDownside
–– Complexity beyond the reach of many programmers Complexity beyond the reach of many programmers 

In analogy , introduction of Fortran and CIn analogy , introduction of Fortran and C
–– The CPU was beyond the reach of many potential software The CPU was beyond the reach of many potential software 

developersdevelopers
–– Fortran and C provide automatic compilation to assemblyFortran and C provide automatic compilation to assembly
–– Spurred the industrySpurred the industry
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Multicores require the introduction of fundamentally new automation. 



Gedae BackgroundGedae Background

We can understand the problem by considering the We can understand the problem by considering the 
guiding principles of automation that effectively guiding principles of automation that effectively 

addresses the problem.addresses the problem.
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Structure of Gedae Structure of Gedae 
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Presenter
Presentation Notes
The compiler is the central location of the automation. It decomposes into components that addresses the many components of multithreaded applications – such as memory, dynamic behavior, concurrency control, deadlock, and data movement. The issue of memory is itself very complex. The interaction of these components – for example, memory buffer alignment and efficient data transfers – compounds the complexity.



The thread manager is required to handle dynamic behavior that can arise from reaction to external events or the varying nature of the data. 



The hardware model is required so that new architectures don’t require re-engineering of the compiler.



The analysis tools are required to expose the structure and behavior of the application giving the developer the opportunity to optimize the implementation.



The functionality and implementation must be separate so that the software for one functional mode can be tuned based on the target architecture.



Compiler 

Guiding Principle for Evolution of Guiding Principle for Evolution of 
Multicore SW Development ToolsMulticore SW Development Tools
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Presenter
Presentation Notes
The primary theme is in the blue arrows. One idea is to identify those things that limit the ability of the compiler to do its job. The functional model should be free of the architecture. The software should be fully crafted from the simplest components to implement the functional model as efficiently as possible.  A second idea is to provide a language that allows the developer to easily express functional behavior. For example. if I want to reset software to switch among algorithms it is at best very tedious to implement the reset manually. So the concept of expression of functionality simply is not well expressed (sorry for the double use of express(ion) ).



((( The more I think about this I think the core of the language is the data flow. Yes. I am coming back to calling it data flow because it preserves the concept of data locality.  Other things are not part of the data flow – such as reset and parameters. While we can press the block diagram into service – and some of it is good and necessary – it is better to rely on other mechanisms for expressing those concepts. The question I ask. is there any data flow nature to parameters? Triggers are a different story. The reason triggers are important is because the ordering is important because of side effects. It is for that reason that Elis’ job is made more difficult. I think understanding what Elis has done and what behavior he had to  implement by carefully crafting the graph. I feel like I am inadequately describing the issue. For example. if I want to set some characteristics of a widget – say text color – then I might have to put a primitive to hold the color until the box is triggered by the arrival of the widget. This seems an incidental part of the software – not something I would think of as part of my functional model. For example. I would say I want to set the color of the widget on initialization (or reset). The reset should be implemented by Gedae. I think when Clay and I discussed the concept – I remember it very well – we were thinking about how we could implement behavior rather than how we could express behavior. I can implement any behavior with C – including algorithm reset – but I can state a requirement to reset (express functionality) using Gedae’s segment markers. ))) 



The left side lists the characteristics required to achieve the guiding principles. For example. I must be able to specify algorithm reset and reset for stateful components but not be required to implement it. Parameters that are asynchronously and infrequently changed should not be implemented tediously with data flow – though they can be. The compiler cannot achieve full efficiency if the behavior is hidden from it.  For the library of essential services. the hardware model should specify its preferences – such as memory alignment or stride by one etc. – if it cannot achieve the preference it should directly call the required function. This puts more burden on the developer of the optimized library – but not really. They don’t have to build the conditionals inside the functions. They just have to build the functions with the appropriate name. I think this same concept should be extended to send / recvs. (I think of this as limiting the conditionals in the library of essential services.) We able to further simplify the construction of optimized libraries by inserting appropriate operators for various numbers / patterns of operators. This might explode because of the combinatorics and may not be necessary as we evolve SFG. 



The right side lists problems encountered when the guiding principles are not fully achieved. 



If a users infers a behavior using the available language the compiler is unable to insure the intended behavior is maintained through the compilation process and will have less opportunity to optimize and automate because it will not know if the optimization or automation will disrupt the behavior. One of the best examples of this is exclusive branch/merge pairs. Memory cannot be shared among the branches unless it is known that only one thread will be active for each token. 











Language Language –– Invariant Invariant 
FunctionalityFunctionality

Functionality must be free of implementation policyFunctionality must be free of implementation policy
–– C and Fortran freed programmer from specifying details of movingC and Fortran freed programmer from specifying details of moving 

data between memory, registers, and ALUdata between memory, registers, and ALU
–– Extend this to multicore parallelism and memory structureExtend this to multicore parallelism and memory structure

The invariant functionality does not include multicore concerns The invariant functionality does not include multicore concerns 
likelike
–– Data decomposition/tilingData decomposition/tiling
–– Thread and task parallelismThread and task parallelism

Functionality must be easy to expressFunctionality must be easy to express
–– Scientist and engineers want a thinking toolScientist and engineers want a thinking tool

Functional expressiveness must be completeFunctional expressiveness must be complete
–– Some algorithms are hard if the language is limitedSome algorithms are hard if the language is limited

99

Presenter
Presentation Notes
The part that amazes me here is the demand for language features. There just aren’t many applications that don’t require an broad set of language features. Data flow by itself only supports a tiny fraction of sensor processing applications. It doesn’t have any fundamental support for  image processing. 



Language Features for Language Features for 
Expressiveness and InvarianceExpressiveness and Invariance
Stream data (time based data) *Stream data (time based data) *
Stream segments with software reset on segment boundaries *Stream segments with software reset on segment boundaries *
Persistent data Persistent data –– extends from state* to databases extends from state* to databases ‡‡

Algebraic equations (HLL most similar to Mathcad) Algebraic equations (HLL most similar to Mathcad) ‡‡

Conditionals Conditionals ††

Iteration Iteration ‡‡

State behavior State behavior ††

Procedural *Procedural *
* These are mature language features* These are mature language features
†† These are currently directly supported in the language but willThese are currently directly supported in the language but will continue to evolvecontinue to evolve
‡‡ Support for directly expressing algebraic equations and iteratiSupport for directly expressing algebraic equations and iteration. while possible to implement in on. while possible to implement in 

the current tool, will be added to the language and compiler in the current tool, will be added to the language and compiler in the next major release.  the next major release.  
Databases will be added soon after. Databases will be added soon after. 
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Presenter
Presentation Notes
Most of the applications built in Gedae require several or most of these language features.



Library FunctionsLibrary Functions

Black box functions hide essential functionality from compilerBlack box functions hide essential functionality from compiler
Library is a vocabulary with an implementationLibrary is a vocabulary with an implementation
conv(float *in, float *out, int R, int C, conv(float *in, float *out, int R, int C, 

float *kernel, int KR, int KC);float *kernel, int KR, int KC);

Algebraic language is a specificationAlgebraic language is a specification
range i=0..Rrange i=0..R--1, j=0..C1, j=0..C--1, i1=0..KR1, i1=0..KR--1, j1=0..KC1, j1=0..KC--1;1;
out[i][j] += in[i+i1][j+j1] * kernel[i1][j1];out[i][j] += in[i+i1][j+j1] * kernel[i1][j1];
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Other examples:
As[i][j] += B[i+i1][j+j1]; /* kernel of ones */
Ae[i][j] |= B[i+i1][j+j1]; /* erosion */
Am[i][j] = As[i][j] > (Kz/2); /* majority operation */

Presenter
Presentation Notes
The problem here is that a library must be a do all (complexity – size and efficiency), is constrained to one place in the code (optimization schemes limited) , and restricts access of the developer and compiler.



The library also has the problem of completeness. The number of data reorg schemes is huge – and many of them are important. Compound that with optimization for each new architecture and the task is daunting. If the language can express, the compiler can optimize and the developer can observe and tweak, then the task is manageable. Though the task of building the compiler is quite demanding!



Library FunctionsLibrary Functions

A simple example of hiding essential functionality is tile A simple example of hiding essential functionality is tile 
extraction from a matrixextraction from a matrix
–– Software structure changes based on data size and target Software structure changes based on data size and target 

architecturearchitecture
–– Library hides implementation from  developer and compilerLibrary hides implementation from  developer and compiler
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Presenter
Presentation Notes
The problem here is that a library must be a do all (complexity – size and efficiency), is constrained to one place in the code (optimization schemes limited) , and restricts access of the developer and compiler.



The library also has the problem of completeness. The number of data reorg schemes is huge – and many of them are important. Compound that with optimization for each new architecture and the task is daunting. If the language can express, the compiler can optimize and the developer can observe and tweak, then the task is manageable. Though the task of building the compiler is quite demanding!



Features Added to Increase Automation Features Added to Increase Automation 
of Example Presented at HPEC 2007of Example Presented at HPEC 2007
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Presenter
Presentation Notes
We will explore these language features by looking at a simple example – distributed matrix multiply.



New FeaturesNew Features

New language features and compiler functionality provide New language features and compiler functionality provide 
increased automation of hierarchical memory managementincreased automation of hierarchical memory management
Language featuresLanguage features
–– Tiled dimensionsTiled dimensions
–– IterationIteration
–– Pointer port typesPointer port types

Compiler functionsCompiler functions
–– Application of stripmining to iterationApplication of stripmining to iteration
–– Inclusion of closeInclusion of close--toto--thethe--hardware List DMA to get/put tileshardware List DMA to get/put tiles
–– MultibufferingMultibuffering
–– Accommodation of memory alignment requirements of SPU and Accommodation of memory alignment requirements of SPU and 

DMADMA
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Matrix Multiplication AlgorithmMatrix Multiplication Algorithm
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Presenter
Presentation Notes
We will explore these language features by looking at a simple example – distributed matrix multiply.



Distributed AlgorithmDistributed Algorithm

Symbolic ExpressionSymbolic Expression
A[i][j] += B[i][k]*C[k][j]A[i][j] += B[i][k]*C[k][j]

Tile operation for distribution Tile operation for distribution 
and small memoryand small memory
ii-->p,i2; j>p,i2; j-->j1,j2; k>j1,j2; k-->k1,k2>k1,k2
[p][j1]A[i2][j2] +=   [p][j1]A[i2][j2] +=   

[p][k1]B[i2][k2] *[p][k1]B[i2][k2] *

[k1][j1]C[k2][j2][k1][j1]C[k2][j2]

Process p sum spatially and  k1 Process p sum spatially and  k1 
and j1 sums temporallyand j1 sums temporally
Accumulate in local store, then Accumulate in local store, then 
transfer result tiles back to transfer result tiles back to 
system memorysystem memory
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Data Partitioning by ProcessorData Partitioning by Processor

Each processor computes different set of rows of Each processor computes different set of rows of ““aa””
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Temporal Data PartitioningTemporal Data Partitioning

Fetch tiles from system memoryFetch tiles from system memory
–– Automatically incorporate DMA List transferAutomatically incorporate DMA List transfer

Compute the sum of the tile matrix multipliesCompute the sum of the tile matrix multiplies
Reconstitute result in system memoryReconstitute result in system memory
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Stripmining and MultibufferingStripmining and Multibuffering

Stripmining this algorithm will process the Stripmining this algorithm will process the 
matrix tilematrix tile--byby--tile instead of all at oncetile instead of all at once
–– Enabling automated stripming adds this to the Enabling automated stripming adds this to the 

compilationcompilation
Multibuffering will overlap DMA of next tile with Multibuffering will overlap DMA of next tile with 
processing of current tileprocessing of current tile
–– Multibuffering table Multibuffering table 

allows this to be turnedallows this to be turned
off and onoff and on
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Analysis of Complexity and Analysis of Complexity and 
PerformancePerformance

13 kernels13 kernels
–– Each kernel has 10 lines of code or less in its Apply methodEach kernel has 10 lines of code or less in its Apply method
–– Future version will be one kernel with 1 line of code defined usFuture version will be one kernel with 1 line of code defined using ing 

algebraic expressionalgebraic expression
Automation ratio (internal kernels added / original kernels / Automation ratio (internal kernels added / original kernels / 
processors)processors)
–– Internal kernels added: 276Internal kernels added: 276
–– Current ratio: 2.65 Current ratio: 2.65 
–– Future ratio:  36Future ratio:  36

Runs at 173.3 GFLOPs on 8 SPEs for large matricesRuns at 173.3 GFLOPs on 8 SPEs for large matrices
–– Higher rates possible using block data layout, up to 95% max Higher rates possible using block data layout, up to 95% max 

throughput of processorthroughput of processor
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Polar Format Synthetic Aperture Radar Polar Format Synthetic Aperture Radar 
AlgorithmAlgorithm



AlgorithmAlgorithm

complex out[j][i] pfa_sar(complex in[i][j],complex out[j][i] pfa_sar(complex in[i][j],
float Taylor[j], complex Azker[i2]) {float Taylor[j], complex Azker[i2]) {

t1[i][j] = Taylor[j] * in[i][j]t1[i][j] = Taylor[j] * in[i][j]
rng[i] = fft(t1[i]); /* FFT of rows */rng[i] = fft(t1[i]); /* FFT of rows */
cturn[j][i] = rng[i][j];cturn[j][i] = rng[i][j];
adjoin[j][i2](t) = i2 < R ? cturn[i2][i](t) : adjoin[j][i2](t) = i2 < R ? cturn[i2][i](t) : 

cturn[j][i2cturn[j][i2--R](tR](t--1) ;1) ;
t2[j] = ifft(adjoin[j]);t2[j] = ifft(adjoin[j]);
t3[j][i2] = Azker[i2] * t2[j][i2];t3[j][i2] = Azker[i2] * t2[j][i2];
azimuth[j] = fft(t3[j]);azimuth[j] = fft(t3[j]);
out[j][i] = azimuth[j][i];out[j][i] = azimuth[j][i];

}}
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Analysis of Code Complexity for Analysis of Code Complexity for 
Benchmark From HPEC 2007Benchmark From HPEC 2007

33 kernels33 kernels
–– 7 tiling kernels specially crafted for this application7 tiling kernels specially crafted for this application
–– 5 data allocation kernels specially crafted for this application5 data allocation kernels specially crafted for this application

DMA transfers between system memory and SPE local storage DMA transfers between system memory and SPE local storage 
coded by hand using E librarycoded by hand using E library
Multibuffering is incorporated into the kernels by handMultibuffering is incorporated into the kernels by hand
The tiling kernels are very complexThe tiling kernels are very complex
–– 80 to 150 lines of code each80 to 150 lines of code each
–– 20 to 100 lines of code in the Apply method20 to 100 lines of code in the Apply method

A productivity tool should do better!A productivity tool should do better!
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Analysis of Code Complexity and Analysis of Code Complexity and 
PerformancePerformance

23 kernels23 kernels
Each kernel has 10 lines of code or less in its Apply methodEach kernel has 10 lines of code or less in its Apply method
Automation ratioAutomation ratio
–– Internal kernels added: 1308Internal kernels added: 1308
–– Current ratio: 7.11Current ratio: 7.11
–– Future ratio: 20.67Future ratio: 20.67

Performance:Performance:
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Algorithm
GFLOPS GB/s

2007 2008 2007 2008
TOTAL SAR 81.1 86.4 16.9 18.0



Backprojection Synthetic Aperture Radar Backprojection Synthetic Aperture Radar 
AlgorithmAlgorithm



Backprojection Backprojection –– the Techniquethe Technique
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AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}
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Presenter
Presentation Notes
Mostly for reference to support line count number in next page. The appendix explains the lines a bit more for reference



Comparison of Manual vs. Comparison of Manual vs. 
Automated ImplementationAutomated Implementation

Automation ratioAutomation ratio
–– Internal kernels added: 1192Internal kernels added: 1192
–– Current ratio: 2.26Current ratio: 2.26
–– Future ratio: 4.13Future ratio: 4.13

Processing time for manual results were reported at IEEE Processing time for manual results were reported at IEEE 
RADAR 2008 conferenceRADAR 2008 conference

Processing time for automated memory transfers with tilingProcessing time for automated memory transfers with tiling
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Npulses 256 512 1024 2048
Time (mSec) 35.7 285.1 2,368.8 18,259.4

Npulses 256 512 1024 2048
Time (mSec) 35.1 280.6 2242.3 17,958.2



Summary and RoadmapSummary and Roadmap

GedaeGedae’’s tiling language allows the compiler to manage s tiling language allows the compiler to manage 
movement of data through hierarchical memorymovement of data through hierarchical memory
–– Great reduction in code size and programmer effortGreat reduction in code size and programmer effort
–– Equivalent performanceEquivalent performance

Gedae Symbolic Expressions will take the next step forward in Gedae Symbolic Expressions will take the next step forward in 
ease of implementationease of implementation
–– Specify the algorithm as algebraic codeSpecify the algorithm as algebraic code
–– Express the data decomposition (both spatially and temporally)Express the data decomposition (both spatially and temporally)
–– The compiler handles the restThe compiler handles the rest
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End of PresentationEnd of Presentation



Appendix: GedaeAppendix: Gedae’’s Future Direction s Future Direction 
Towards Full AutomationTowards Full Automation



Implementation Tools Implementation Tools –– Automatic Automatic 
ImplementationImplementation

www.gedae.comwww.gedae.com 3232
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Appendix: Cell/B.E. Architecture Details Appendix: Cell/B.E. Architecture Details 
and Tiled DMA Characterizationand Tiled DMA Characterization



Cell/B.E Compute Capacity and Cell/B.E Compute Capacity and 
System Memory BandwidthSystem Memory Bandwidth

Maximum flop capacity Maximum flop capacity -- 204.8 Gflop/sec 32 bit (4 byte data)204.8 Gflop/sec 32 bit (4 byte data)
–– 3.2 GHz * 8 flop/SPU * 8 SPU3.2 GHz * 8 flop/SPU * 8 SPU

Maximum memory bandwidth Maximum memory bandwidth –– 3.2 GWords/sec3.2 GWords/sec
–– 25.6 / 4 / 2 words / function / second25.6 / 4 / 2 words / function / second

25.6 GB/sec 25.6 GB/sec 
4 bytes/word4 bytes/word
2 words/function (into and out2 words/function (into and out--of memory)of memory)

Ideal compute to memory ratio Ideal compute to memory ratio –– 64 flops per floating point data 64 flops per floating point data 
valuevalue
–– 204.8 / 3.2 204.8 / 3.2 
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Practical IssuesPractical Issues

Degradation of memory bandwidthDegradation of memory bandwidth
–– Large transfer alignment and size requirements Large transfer alignment and size requirements 

Need 16 byte alignment on source and destination addressesNeed 16 byte alignment on source and destination addresses
Transfer size must be multiple of 16 bytesTransfer size must be multiple of 16 bytes

–– DMA transfers have startup overheadDMA transfers have startup overhead
Less overhead to use list DMA than to do individual DMA transferLess overhead to use list DMA than to do individual DMA transferss

Degradation of compute capacityDegradation of compute capacity
–– Compute capacity is based on:Compute capacity is based on:

add:multiply ratio of 1:1add:multiply ratio of 1:1
4 wide SIMD ALU4 wide SIMD ALU

–– Filling and emptying ALU pipeFilling and emptying ALU pipe
–– Pipeline latencyPipeline latency
–– Data shuffling using SIMD unitData shuffling using SIMD unit
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Appendix: Polar Format SAR Description Appendix: Polar Format SAR Description 
and Flow Graph Specificaitonand Flow Graph Specificaiton



Stages of SAR AlgorithmStages of SAR Algorithm

PartitionPartition
–– Distribute the matrix to multiple PEsDistribute the matrix to multiple PEs

RangeRange
–– Compute intense operation on the rows of the matrixCompute intense operation on the rows of the matrix

Corner TurnCorner Turn
–– Distributed matrix transposeDistributed matrix transpose

AzimuthAzimuth
–– Compute intense operation on the rows of  [ M(iCompute intense operation on the rows of  [ M(i--1) M(i) ]1) M(i) ]

ConcatenationConcatenation
–– Combine results from the PEs for displayCombine results from the PEs for display
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SimplificationsSimplifications

Tile dimensions specify data decompositionTile dimensions specify data decomposition
–– Input: stream float in[Rt:R][Ct:C]Input: stream float in[Rt:R][Ct:C]

–– Output: stream float out[Rt/N:R][Ct/N:C]Output: stream float out[Rt/N:R][Ct/N:C]

This is all the information the compiler needsThis is all the information the compiler needs
–– User specifies tile size to best fit in fast local storageUser specifies tile size to best fit in fast local storage
–– Compiler stripmines the computation to stream the data through Compiler stripmines the computation to stream the data through 

the coprocessorsthe coprocessors
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Simplified Specification: RangeSimplified Specification: Range
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Simplified Specification: Corner Simplified Specification: Corner 
TurnTurn
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Simplified Specification: Azimuth Simplified Specification: Azimuth 
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KernelsKernels

Kernels are no more complex than the partitioning kernel Kernels are no more complex than the partitioning kernel 
shown in the Matrix Multiply exampleshown in the Matrix Multiply example
Only difference is it partitions split complex data!Only difference is it partitions split complex data!
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Appendix: Backprojection SAR Symbolic Appendix: Backprojection SAR Symbolic 
Expression Code AnalysisExpression Code Analysis



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

4545

Function 
prototype



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}
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Declare range variable 
(iteraters) needed.



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}
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Zero fill interpolation array 
and then fill with input data. 
Notice interpolation array is 

4X the input array.



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}
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Use FFT for pulse 
compression resulting in 
a 4X interpolation of the 

data in the spatial domain. 



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}
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Calculate the range from 
every point in the output  

image to every pulse 
observation point.



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF * 4;rstart[p]) * 2 * DF * 4;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}
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Calculate the phase 
shift from every point in 

the output  image to 
every pulse observation 

point.



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) *2 * DF / 4;rstart[p]) *2 * DF / 4;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}
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Calculate the range bin 
corresponding to the 

range of the image point 
from the observation point.



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / C;rstart[p]) * 2 * DF / C;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

5252

Calculate the linear 
interpolation weights since 

range will not in center of bin.



AlgorithmAlgorithm

complex out[x][y] backprojection(complex in[p][f0], float xo[p],complex out[x][y] backprojection(complex in[p][f0], float xo[p],

float yo[p], float zo[p], float sr[p], int X, int Y, float DF,float yo[p], float zo[p], float sr[p], int X, int Y, float DF,

int Nbins) {int Nbins) {

range f = f0 * 4, x = Xrange f = f0 * 4, x = X--1,  y = Y1,  y = Y--1;1;

{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }{ in1[p][f] = 0.0; in1[p][f0] = in[p][f0]*W[f0]; }

in2[p] = ifft(in1[p])in2[p] = ifft(in1[p])

rng[p][y][x] = sqrt((xo[p]rng[p][y][x] = sqrt((xo[p]--x[x])^2 + (yo[p]x[x])^2 + (yo[p]--y[y])^2 + zo[p]^2);y[y])^2 + zo[p]^2);

dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);dphase[p][y][x] = exp(i*4*PI/C*f0[p]* rng[p][y][x]);

rbin[p][y][x] = Nbins * (rng[p][y][x] rbin[p][y][x] = Nbins * (rng[p][y][x] -- rstart[p]) * 2 * DF / 4;rstart[p]) * 2 * DF / 4;

irbin[p][y][x] = floor(rbin[p][y][x]);irbin[p][y][x] = floor(rbin[p][y][x]);

w1[p][y][x] = rbin[p][y][x] w1[p][y][x] = rbin[p][y][x] -- irbin[p][y][x];irbin[p][y][x];

w0[p][y][x] = 1 w0[p][y][x] = 1 –– w1[p][y][x];w1[p][y][x];

out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];in2[p][irbin[p][y][x]+1]*w1[p][y][x])* phase[p][y][x];

}}

5353

Linearly interpolate return 
and adjust for phase change 

due to propagation time.



Analysis of Code Complexity and Analysis of Code Complexity and 
PerformancePerformance

The graphs for the backprojection algorithm The graphs for the backprojection algorithm –– while much while much 
simpler than the corresponding C code simpler than the corresponding C code –– are relatively complex are relatively complex 
compared with the data movement. The complexity of the graph compared with the data movement. The complexity of the graph 
is compounded by the 2 sources of complexity. There is great is compounded by the 2 sources of complexity. There is great 
benefit to using symbolic expressions to replace block benefit to using symbolic expressions to replace block 
diagrams as the input. The comparison is shown in an example diagrams as the input. The comparison is shown in an example 
in the next chart.in the next chart.
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Comparison of Symbolic Comparison of Symbolic 
Expression and Block DiagramExpression and Block Diagram

5555

w1[p][y][x] = rbin[p][y][x] - irbin[p][y][x];
w0[p][y][x] = 1 – w1[p][y][x];
out[y][x] += (in2[p][irbin[p][y][x]]*w0[p][y][x] +

in2[p][irbin[p][y][x]+1]*w1[p][y][x]) * phase[p][y][x];
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