

# CrossCheck: Improving System Confidence through High-Speed Dynamic Property Checking

#### Jonathan Springer\* (PI), James Ezick\*, David Wohlford\*, Matthew Craven<sup>†</sup>, Rick Buskens<sup>†</sup>

(\*) Reservoir Labs

632 Broadway, #803 New York, NY 10012 (212) 780-0527 springer@reservoir.com

#### (†) Lockheed Martin

3 Executive Campus Cherry Hill, NJ 08002 (856) 792-9019 matthew.craven@Imco.com

**Unclassified, DISTRIBUTION STATEMENT A:** Approved for public release; distribution is unlimited. This material is based upon works supported by the Department of Defense under contract numbers FA8750-06-C-0133 and FA8750-07-C-0049. Any opinions, findings and conclusions expressed in this material are those of Reservoir Labs, and do not necessarily reflect the views of the Department of Defense. Copyright © 2008 Reservoir Labs, Inc.





# Outline

- Problem area
- Dynamic specification checking approach
- Use cases and applications
- Technology details
- Remarks and conclusions





- We rely on increasingly complex systems
  - Large amount of software, large numbers of developers
- Systems are getting more autonomous
  - Scale leads to goal-directed behavior
  - Deployment environment requires goal-directed behavior
- → Increased possibility of defects
- → Increased impact of defects
  - Incremental time and money: failures during development and testing
  - Catastrophic: failures during deployment





- Well-known problem: Malicious Internet traffic
- Well-known solution: Packet-filtering appliances
  - Network Intrusion Detection System (NIDS)
- NIDS problem area has several characteristic features:



.....Packets of data to process .....Properties expressed as patterns/specifications .....Properties can be complex (e.g. protocols) .....Need for (very) fast matching .....Static or offline checking not appropriate

alert tcp \$EXTERNAL\_NET any -> \$HOME\_NET 53 (msg:"DNS zone transfer TCP"; flow:to\_server,established; content:"|00 00 FC|";

Snort specification





- Many problems in different domains parallel this structure
   E.g., verifying the behavior of a Flight Control System
- Flight Control System checking problem characteristics:



.....Sensor, actuator, & controller events to process .....Properties expressed as patterns/specifications .....Properties can be complex .....Need for fast matching .....Static checking helps, but often not a solution

```
LongAccel <- AccelHigh ; NoDecel* ; ContinuedAccel ;;
AccelRule := LongAccel,
group::0, attr::{oldest_only, rollback, match_recover},
recover::<LongAccel_recover_f>,
desc::"Check acceleration does not exceed duration limit" ;;
```





Need a common framework to address these problems

- We have developed CrossCheck, a platform for dynamic checking of formal specifications
  - Specification target is any system of inputs and outputs with behavior complex enough that it does not admit static proof of correctness
- Design goals:
  - Be applicable in a wide variety of use cases
  - Scale to high data rates
  - Be flexible and practical for specifying properties of interest





## **Specifications and Checking**

- CrossCheck specifications operate on "Event" abstraction
  - Events are domain-specific
- Specifications are written by a developer for characterizing behavior of a system
  - Written in a formal language (not English)
  - Can come from: requirements documents, expert knowledge, previous failures, ...
- Specifications are compiled into a form that can be efficiently checked at system runtime
  - Final form is compiled C code, for platform flexibility and performance
  - Works with a runtime that manages all the common parts of checking
    - Recording events, calling the compiled specification code, reporting violations, etc.



### **CrossCheck System Architecture**



**HPEC 2008** 



#### **CrossCheck Use Cases**



LOCKHEED MARTIN

## **Online Verification of Flight Control System**

- Flight control systems offer good use case for dynamic checking
  - Require high reliability
  - Static checking often not feasible (intractable)
- Write specifications of control system behavior
  - Encode requirements as specifications
  - Encode failure modes as (negative) specifications
- CrossCheck offers a means of independent verification, operating outside the FCS
  - Can be useful for formal requirements
    - E.g., RTCA/DO-178B
- Goal is detect designed-in failure modes
  - Orthogonal to hardware redundancy
    - E.g. TMR





How to apply?

- Control systems involve the interaction of sensors, actuators, and control devices
  - All communicate via formatted data streams
  - Formatting typically reduces to large collections of key/data pairs
  - Easily described as CrossCheck Events
- Emerging flight architectures use standard network interfaces to communicate
  - Simplifies interfacing to CrossCheck runtime component
- Can operate at
  - Development time
  - Test stand (ETS) time
  - Deployment time

 Operator Panel

 DATA Mognit

 SMON Serge

 RS222

 Storage

 RUT

 REU

 ROC

 VME

 VME

 VME

LOCKHEED M



- Software modules have APIs that must be used properly
  - Specific order of procedure calls, parameter constraints, etc.
- Existing design-by-contract tools focus on Hoare-style constraints
  - E.g. Eiffel/Larch, Java Modeling Language
  - Focus on preconditions & postconditions
  - Difficult to describe patterns and constraints that span multiple calls
- CrossCheck supports more global view of API state
  - Patterns of calls, sequencing, iterations, etc.
- Examples:
  - Malloc/Free usage
  - Race condition detection (e.g. Farzan, CAV '08)
  - VSIPL API usage
  - Software Communications Architecture (SCA)







## **Software Systems Interface Checking**

| <ul> <li>Implemented demonstration<br/>specifications to check SCA<br/>(Software Communications Arch.)<br/>specification</li> </ul> |                                                                                                                                                                                                                                                                                                                                         | Microsoft Win<br>(C) Copyright<br>C:\ezick>cd a<br>C:\ezick\af67<br>C:\ezick\af67<br>CrossCheck Ru<br>Demonstra<br>Copyright (C) | Command Prompt     Imicrosoft Windows XP [Uersion 5.1.2600]     (C) Copyright 1985-2001 Microsoft Corp.     C:\ezick\cd af67\crosscheck\demos     C:\ezick\af67\crosscheck\demos>cd AP0605     C:\ezick\af67\crosscheck\demos>cd AP0605     C:\ezick\af67\crosscheck\demos>cd AP0605     C:\ezick\af67\crosscheck\demos\demos>cd AP0605     C:\ezick\af67\crosscheck\demos\demos>cd AP0605     C:\ezick\af67\crosscheck\demos\demos>cd AP0605     C:\ezick\af67\crosscheck\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\demos\dem |                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
|                                                                                                                                     | <ul> <li>E.g. AP0605 requirements</li> </ul>                                                                                                                                                                                                                                                                                            | Runtime violation found.<br>Label: ap0605c01<br>Group: 0                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |  |  |
|                                                                                                                                     | Runtime violation found.<br>Label: ap0605c01<br>Group: 0<br>Desc: AP0605 C01: Valid characters<br>or directory name are the 62 alphanumer<br>(Upper and lowercase letters and the nu<br>in addition to the '.' (period), '_' (u<br>'-' (hyphen) characters. (Sec. 3.1.3.4.<br>File: waveform.c<br>Line: 22<br>EID: 1<br>Elapsed: 0.000s | s for a filename<br>eric characters<br>numbers 0 to 9)<br>(underscore) and                                                       | found.       c03         bers 0 to 9)       C03: Valid pathnames are structured according to the POSIX spec alid characters include the '/' (forward slash) character in ad id filename characters. (Sec. 3.1.3.4.2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |  |  |
|                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         | EVALUATION REI                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Øcha                       |  |  |
|                                                                                                                                     | PATHNAME: my_backup_filename~.txt                                                                                                                                                                                                                                                                                                       | SCA Requiremen<br>                                                                                                               | nt Tested<br>3<br>3<br>3<br>3<br>3<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Failed<br>1<br>1<br>0<br>1 |  |  |
| re                                                                                                                                  | aservoir Labs                                                                                                                                                                                                                                                                                                                           | HPEC 2008<br>13                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOCKHEED MARTIN            |  |  |

### **Test System Perturbation Injection**

- In testing, may want to force creation of a rare situation
  - E.g., "after 100 calls to procedures A and B, variable X changes"
- Can express such perturbation as CrossCheck specification
  - 1. Specification recognizes when necessary conditions are met for injecting the change
  - 2. Recovery action performs the desired change in the system under test



- Cognitive applications are especially difficult to analyze statically
- Cognitive applications may rely more on emergent behavior (e.g. subsymbolic systems), for which there is not a strong intuitive notion of correctness
- Example: planning application on top of the Soar cognitive framework
  - Cognitive application is primarily a set of rules matching "facts" to corresponding fact updates
  - Facts match well to the Event abstraction



LOCKHEED MAR



- Network intrusion detection system (NIDS) watches for malicious traffic in network flow passing by at line speed (100Mbps, 1Gbps, 10Gbps, ...)
  - Traditional NIDSs inspect and verify at the TCP/IP level, but not much at application level protocol
  - E.g., existing Reservoir NIDS technology: R-Scope
- Protocol verification requires deep content inspection and more sophisticated validity rules
  - Rise of protocol specification languages: Bro's binpac, Microsoft GAPAL
- Good match for CrossCheck
  - Dynamic, complex rules, event abstractions ↔ protocol abstractions
  - Stresses high-speed operation



LOCKHEED MAR

### **CrossCheck as IDS**



17

Two distinguishing features of CrossCheck:

- 1. Practical specification language
  - Simple set of primitive operators as basis for specification language
  - Specification language has well-defined semantic basis
  - Close integration with general-purpose C for flexibility (and familiarity)
- 2. Efficient execution engine for checking specifications
  - Avoid explicit state machine graphs to avoid exponential size issues
  - Check state expanded only as needed, as match progresses





## **CrossCheck Specification Language (CSL) Formalism**

- Four basic operations:
  - 1. Comparison (basic unit of matching)
  - 2. Merge (e.g. "and," "or")
  - 3. Concatenation (e.g. sequencing)
  - 4. Repetition (w/ intervals)
- CSL defined in terms of an evaluation semantics
  - Rules have customizable semantics
  - Hierarchical expression language
- Each operation can execute arbitrary C code
  - Update global or match-local state
  - Use CrossCheck environment facilities

```
The update operation transitions a single active match by processing an event (s)
```

```
concatenation

\begin{split} \bar{\phi_{+}}.update_{E}(s) &:= \{ \\ & \text{let } \mathcal{A} = \emptyset; \\ & \text{let } \mathcal{A}_{i} = combine(\bar{\phi}_{|}.\mathcal{P}_{i},s); \\ & \text{foreach } \Gamma_{i} \in \mathcal{A}_{i} \{ \\ & \text{let } < \bar{\phi}_{j}, b_{j} >= spawn_{E}(\bar{\phi}_{+}.L_{j},\Gamma_{i}); \\ & \bar{\phi}_{+}.\mathcal{P}_{j} = \bar{\phi}_{+}.\mathcal{P}_{j} \cup \{\bar{\phi}_{j}\}; \\ & \text{if } (b_{j}) \mathcal{A} = \mathcal{A} \cup \{\bar{\phi}_{+}.\phi_{+}.f(\Gamma_{i},s)\}; \\ \} \\ & \text{let } \mathcal{A}_{j} = combine(\bar{\phi}_{|}.\mathcal{P}_{j},s); \\ & \text{foreach } \Gamma_{j} \in \mathcal{A}_{j} \{ \\ & \mathcal{A} = \mathcal{A} \cup \{\bar{\phi}_{+}.\phi_{+}.f(\Gamma_{j},s)\}; \\ \} \\ & \text{let } b = \bar{\phi}_{+}.\mathcal{P}_{i} \neq \emptyset \land \bar{\phi}_{+}.\mathcal{P}_{i} \neq \emptyset; \\ & \text{return } < \mathcal{A} \backslash \{\Gamma_{0}\}, b >; \\ \end{split}
```

#### **CSL Semantics Fragment**

LOCKHEED MAR

## **CrossCheck Specification Language (CSL) Syntax**



88

[user-written C code]

- C code



## **CrossCheck Specification Language (CSL) Syntax**



reservoir Labs

LOCKHEED MAR

## **CrossCheck Implementation Workflow**



HPEC 2008



- Add usability features
  - Continue to add to specification library
  - Second-order analysis to jump-start specification writing
  - Compatibility with standardized data exchange formats for Event streams
    - E.g. Data Distribution Service (DDS)
- Performance features
  - Integration with hardware support from R-Scope
  - Needed for some use cases (NIDS), but not others
- Continue to guide CrossCheck progress with use cases





Feedback can be established between rule matches and specifications, or between matches and the external system

- Use for specification inference
  - System can suggest possible specifications based on training data
- Use for model-based recovery
  - Recovery operations operate according to a formal model of the system under test
- Probabilistic failure detection
  - Collections of nonfatal violations, accumulating a probability of error





- Dynamic checking of specifications is broadly applicable
  - Works in many cases where static checking not feasible
- Useful to abstract dynamic checking support into a framework (CrossCheck)
- Simple, orthogonal set of specification language primitives helps simplify specifications
- Specification language practicality important
  - C integration



