
CrossCheck: Improving System Confidence through
High-Speed Dynamic Property Checking

Jonathan Springer* (PI), James Ezick*, David
Wohlford*, Matthew Craven†, Rick Buskens†

U.S. Air Force AFRL-SBIR FA8750-07-C-0049

HPEC 2008

Unclassified, DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. This
material is based upon works supported by the Department of Defense under contract numbers FA8750-
06-C-0133 and FA8750-07-C-0049. Any opinions, findings and conclusions expressed in this material are
those of Reservoir Labs, and do not necessarily reflect the views of the Department of Defense.
Copyright © 2008 Reservoir Labs, Inc.

632 Broadway, #803
New York, NY 10012
(212) 780-0527
springer@reservoir.com

3 Executive Campus
Cherry Hill, NJ 08002
(856) 792-9019
matthew.craven@lmco.com

(*) Reservoir Labs (†) Lockheed Martin

Outline

• Problem area
• Dynamic specification checking approach
• Use cases and applications
• Technology details
• Remarks and conclusions

HPEC 2008
2

Problem Area: System Complexity

• We rely on increasingly complex systems
– Large amount of software, large numbers of developers

• Systems are getting more autonomous
– Scale leads to goal-directed behavior
– Deployment environment requires goal-directed behavior

Increased possibility of defects
Increased impact of defects
– Incremental time and money: failures during development and

testing
– Catastrophic: failures during deployment

HPEC 2008
3

A Dynamic Checking Exemplar

• Well-known problem: Malicious Internet traffic
• Well-known solution: Packet-filtering appliances

– Network Intrusion Detection System (NIDS)
• NIDS problem area has several characteristic features:

HPEC 2008
4

Network
Intrusion
Detection
System

……Packets of data to process
……Properties expressed as patterns/specifications

……Need for (very) fast matching
……Static or offline checking not appropriate

……Properties can be complex (e.g. protocols)

P
ac

ke
ts

alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"DNS zone transfer TCP";
flow:to_server,established; content:"|00 00 FC|";

Snort specification

Generalized Dynamic Checking

• Many problems in different domains parallel this structure
– E.g., verifying the behavior of a Flight Control System

• Flight Control System checking problem characteristics:

HPEC 2008
5

Flight
Control
System
Checker

……Sensor, actuator, & controller events to process
……Properties expressed as patterns/specifications

……Need for fast matching
……Static checking helps, but often not a solution

……Properties can be complex

FC
S

 E
ve

nt
s

LongAccel <- AccelHigh ; NoDecel* ; ContinuedAccel ;;
AccelRule := LongAccel,

group::0, attr::{oldest_only, rollback, match_recover},
recover::<LongAccel_recover_f>,
desc::"Check acceleration does not exceed duration limit" ;;

CrossCheck
specification

CrossCheck

Need a common framework to address these problems
• We have developed CrossCheck, a platform for dynamic

checking of formal specifications
– Specification target is any system of inputs and outputs with

behavior complex enough that it does not admit static proof of
correctness

• Design goals:
– Be applicable in a wide variety of use cases
– Scale to high data rates
– Be flexible and practical for specifying properties of interest

HPEC 2008
6

Specifications and Checking

• CrossCheck specifications operate on “Event” abstraction
– Events are domain-specific

• Specifications are written by a developer for characterizing
behavior of a system
– Written in a formal language (not English)
– Can come from: requirements documents, expert knowledge,

previous failures, …
• Specifications are compiled into a form that can be efficiently

checked at system runtime
– Final form is compiled C code, for platform flexibility and

performance
– Works with a runtime that manages all the common parts of

checking
• Recording events, calling the compiled specification code, reporting

violations, etc.

HPEC 2008
7

CrossCheck System Architecture

HPEC 2008
8

Monitoring agent

Instrumented
System

System Specification

Specification Compiler

Specification
Checker

Event
Handler

Event
Store

Recovery agent

CrossCheck Runtime

Violation Recovery

Violation Reporter

2nd Order
Analysis

Specification
Library

Compiled Specification

Visualization,
other add-ons

…

Events

Pre-existing system

User-written/generated

CrossCheck component

CrossCheck Preprocessing

Events
(optional)

CrossCheck future work

CrossCheck Use Cases

HPEC 2008
9

CrossCheck

VSIPL
Application
Structure

F(3)=5
F(3)=5
F(3)=5
F(3)=5

F(3)=5
F(3)=5
F(3)=6
F(3)=5

F(3)=5
F(3)=5
F(3)=5
F(3)=5

Flight Control System Checking
Software Interface Checking

IDS Protocol CheckingTest System Δ InjectionCognitive Application Checking

• Flight control systems offer good use case for dynamic
checking
– Require high reliability
– Static checking often not feasible (intractable)

• Write specifications of control system behavior
– Encode requirements as specifications
– Encode failure modes as (negative) specifications

• CrossCheck offers a means of independent verification,
operating outside the FCS
– Can be useful for formal requirements

• E.g., RTCA/DO-178B

• Goal is detect designed-in failure modes
– Orthogonal to hardware redundancy

• E.g. TMR

Online Verification of Flight Control System

HPEC 2008
10

Online Verification of Flight Control System

How to apply?
• Control systems involve the interaction of sensors, actuators,

and control devices
– All communicate via formatted data streams
– Formatting typically reduces to large collections of key/data pairs
– Easily described as CrossCheck Events

• Emerging flight architectures use standard network interfaces
to communicate
– Simplifies interfacing to CrossCheck runtime component

• Can operate at
– Development time
– Test stand (ETS) time
– Deployment time

HPEC 2008
11

Software Systems Interface Checking

• Software modules have APIs that must be used properly
– Specific order of procedure calls, parameter constraints, etc.

• Existing design-by-contract tools focus on Hoare-style
constraints
– E.g. Eiffel/Larch, Java Modeling Language
– Focus on preconditions & postconditions
– Difficult to describe patterns and constraints that span multiple

calls
• CrossCheck supports more global view of API state

– Patterns of calls, sequencing, iterations, etc.
• Examples:

– Malloc/Free usage
– Race condition detection (e.g. Farzan, CAV ‘08)
– VSIPL API usage
– Software Communications Architecture (SCA)

HPEC 2008
12

Software Systems Interface Checking

• Implemented demonstration
specifications to check SCA
(Software Communications Arch.)
specification

– E.g. AP0605 requirements

HPEC 2008
13

13

Runtime violation found.
Label: ap0605c01
Group: 0
Desc: AP0605 C01: Valid characters for a filename

or directory name are the 62 alphanumeric characters
(Upper and lowercase letters and the numbers 0 to 9)
in addition to the '.' (period), '_' (underscore) and
'-' (hyphen) characters. (Sec. 3.1.3.4.2.1)

File: waveform.c
Line: 22
EID: 1
Elapsed: 0.000s
PATHNAME: my_backup_filename~.txt

EVALUATION REPORT SUMMARY

SCA Requirement Tested Failed
--
AP0605 3 1
AP0605 C01 3 1
AP0605 C02 3 0
AP0605 C03 3 1

Test System Perturbation Injection

• In testing, may want to force creation of a rare situation
– E.g., “after 100 calls to procedures A and B, variable X changes”

• Can express such perturbation as CrossCheck specification
1. Specification recognizes when necessary conditions are met for

injecting the change
2. Recovery action performs the desired change in the system under

test

HPEC 2008
14

F(3)=5
F(3)=5
F(3)=5
F(3)=5
F(3)=5
F(3)=5

F(3)=6
F(3)=5

F(3)=5
F(3)=5
F(3)=5
F(3)=5

i=0

i=1

i=2

i=3

i=4

i=5
i=4 6

CrossCheckApp. behavior of function “F” Filtered behavior of “F”

Checking of Cognitive Systems

• Cognitive applications are especially
difficult to analyze statically

• Cognitive applications may rely more on
emergent behavior (e.g. subsymbolic
systems), for which there is not a strong
intuitive notion of correctness

• Example: planning application on top of
the Soar cognitive framework
– Cognitive application is primarily a set of

rules matching “facts” to corresponding
fact updates

– Facts match well to the Event
abstraction

HPEC 2008
15

Violation of turn
specification

Deep Network Protocol Inspection

• Network intrusion detection system (NIDS) watches for
malicious traffic in network flow passing by at line speed
(100Mbps, 1Gbps, 10Gbps, …)
– Traditional NIDSs inspect and verify at the TCP/IP level, but not

much at application level protocol
– E.g., existing Reservoir NIDS technology: R-Scope

• Protocol verification requires deep content inspection and
more sophisticated validity rules
– Rise of protocol specification languages: Bro’s binpac,

Microsoft GAPAL
• Good match for CrossCheck

– Dynamic, complex rules, event abstractions ↔ protocol
abstractions

– Stresses high-speed operation

HPEC 2008
16

CrossCheck as IDS

HPEC 2008
17

Parallelize by flow

Postprocess

Preprocess

DFA
Policy

Data Structures

CrossCheck
Compile-time

CrossCheck Runtime

In parallel across
chips and cores

Hardware
assisted
automata
enginesPolicy

Authority

Layer CrossCheck
specification-
checking on
existing R-Scope
hardware-assisted
checking
infrastructure

CrossCheck Technology

Two distinguishing features of CrossCheck:
1. Practical specification language

– Simple set of primitive operators as basis for specification
language

– Specification language has well-defined semantic basis
– Close integration with general-purpose C for flexibility (and

familiarity)
2. Efficient execution engine for checking specifications

– Avoid explicit state machine graphs to avoid exponential size
issues

– Check state expanded only as needed, as match progresses

HPEC 2008
18

CrossCheck Specification Language (CSL) Formalism

• Four basic operations:
1. Comparison (basic unit of matching)
2. Merge (e.g. “and,” “or”)
3. Concatenation (e.g. sequencing)
4. Repetition (w/ intervals)

• CSL defined in terms of an evaluation
semantics

– Rules have customizable semantics
– Hierarchical expression language

• Each operation can execute arbitrary C code
– Update global or match-local state
– Use CrossCheck environment facilities

CSL Semantics Fragment

The update operation transitions a
single active match by processing
an event (s)

HPEC 2008
19

CrossCheck Specification Language (CSL) Syntax

HPEC 2008
20

NAV(timestamp:uint64,
x_acc:double, y_acc:double, z_acc:double,
align_done:int32, aligning:int32) ;;

%%

AccelHigh <- <accel_high_p>?:<accel_high_f> ;;
NoDecel <- <predicate_p_true>?:<no_decel_f>;;
ContinuedAccel <- <true_p>?:<long_accel_f> ;;
LongAccel <- AccelHigh ; NoDecel* ; ContinuedAccel ;;

AccelRule := LongAccel,
<rule_index_f_all>, <rule_init_f_empty>,
<accel_high_rec_f>, <rule_destroy_f_nop>, 0,
{oldest_only, no_rollback}, {},
"Acceleration too high for too long" ;;

%%

[user-written C code]

Event declarations

Productions / Rules

C code

CrossCheck Specification Language (CSL) Syntax

HPEC 2008
21

NAV(timestamp:uint64,
x_acc:double, y_acc:double, z_acc:double,
align_done:int32, aligning:int32) ;;

%%

AccelHigh <- <accel_high_p>?:<accel_high_f> ;;
NoDecel <- <predicate_p_true>?:<no_decel_f>;;
ContinuedAccel <- <true_p>?:<long_accel_f> ;;
LongAccel <- AccelHigh ; NoDecel* ; ContinuedAccel ;;

AccelRule := LongAccel,
<rule_index_f_all>, <rule_init_f_empty>,
<accel_high_rec_f>, <rule_destroy_f_nop>, 0,
{oldest_only, no_rollback}, {},
"Acceleration too high for too long" ;;

%%

[user-written C code]

Event declarations

Productions / Rules

C code

CrossCheck Implementation Workflow

HPEC 2008
22

User
Source
Code

CSL
Concrete
Syntax

CSL
Compiler

Spec.
Source
Code (C)

gcc

CrossCh.
API
Library

Event
Generating
Library

Source
Compiler

Event-
generating
Program

Events

Crosscheck Runtime

Compiled
Specification
(C)

Runtime
Support
Code (C++)

Compile-time

Run-time

Updates
(optional)

Future Directions

• Add usability features
– Continue to add to specification library
– Second-order analysis to jump-start specification writing
– Compatibility with standardized data exchange formats for Event

streams
• E.g. Data Distribution Service (DDS)

• Performance features
– Integration with hardware support from R-Scope
– Needed for some use cases (NIDS), but not others

• Continue to guide CrossCheck progress with use cases

HPEC 2008
23

Second-order Analysis

Feedback can be established between rule matches and
specifications, or between matches and the external system
• Use for specification inference

– System can suggest possible specifications based on training data
• Use for model-based recovery

– Recovery operations operate according to a formal model of the
system under test

• Probabilistic failure detection
– Collections of nonfatal violations, accumulating a probability of

error

HPEC 2008
24

Summary

• Dynamic checking of specifications is broadly applicable
– Works in many cases where static checking not feasible

• Useful to abstract dynamic checking support into a framework
(CrossCheck)

• Simple, orthogonal set of specification language primitives
helps simplify specifications

• Specification language practicality important
– C integration

HPEC 2008
25

	CrossCheck: Improving System Confidence through�High-Speed Dynamic Property Checking
	Outline
	Problem Area: System Complexity
	A Dynamic Checking Exemplar
	Generalized Dynamic Checking
	CrossCheck
	Specifications and Checking
	CrossCheck System Architecture
	CrossCheck Use Cases
	Online Verification of Flight Control System
	Online Verification of Flight Control System
	Software Systems Interface Checking
	Software Systems Interface Checking
	Test System Perturbation Injection
	Checking of Cognitive Systems
	Deep Network Protocol Inspection
	CrossCheck as IDS
	CrossCheck Technology
	CrossCheck Specification Language (CSL) Formalism
	CrossCheck Specification Language (CSL) Syntax
	CrossCheck Specification Language (CSL) Syntax
	CrossCheck Implementation Workflow
	Future Directions
	Second-order Analysis
	Summary

