Parallelizing QR Decompositions
with the R-Stream Compiler

Allen Leung, Nicolas Vasilache, Benoît Meister,
David Wohlford, Richard Lethin
Reservoir Labs, Inc.

Unclassified, Distribution Statement A: Approved for public release; distribution is unlimited.
This material is based upon works supported by the Department of Defense under contract numbers F30602-03-0033, W31P4Q-07-C-0147, W9113M-07-C-0072, W9113M-08-C-0146 and W31P4Q-08-C-0319. Any opinions, findings and conclusions expressed in this material are those of Reservoir Labs, and do not necessarily reflect the views of the Department of Defense.

Copyright © 2008 Reservoir Labs, Inc.
Outline

• QR decompositions
• Architectures
• The R-Stream compiler
• The polyhedral model and the scheduling algorithm
• Unified tradeoff between parallelization and locality
• R-Stream QR decompositions:
 – Givens
 – Modified Gram-Schmidt
 – Householder
• Current weaknesses and future work
• Conclusion and remarks
QR Decompositions

- Decompose $X = QR$, where Q is orthonormal ($Q^T Q = I$) and R is upper triangular.
- High performance of QR decomposition is crucial to many HPEC applications, e.g., QR Recursive Least Squares (QR-RLS) in a Space Time Adaptive Processing (STAP) radar.
- Very efficient “hand crafted” systolic implementations exist, e.g., Nguyen et al., HPEC 2005:

\[
\begin{align*}
 r_{ij}(n) &= \begin{cases}
 \sqrt{x_j(n)} & i = j \\
 0 & i \neq j
 \end{cases} \\
 c_i(n) &= \frac{r_i(n-1)}{r_i(n)} - \frac{1}{\sqrt{x_i(n-1)}} \\
 s_i(n) &= x_i(n) \frac{1}{\sqrt{x_i(n)}} \\
 y_j(n) &= c_j(n) + x_j(n) \\
 x_{i+1,j}(n) &= -s_i(n) y_j(n) + c_i(n) x_{i,j}(n)
\end{align*}
\]

Efficiencies of the systolic form come from multidimensional, wavefront parallelism and high degrees of locality.
Next Generation Multi-Core Processors/Accelerators

Efficient execution on such devices requires finding mixed coarse, fine, wavefront parallelism and high degrees of locality.
R-Stream Compiler Flow

Different APIs and execution models (C, OpenMP, DMA, Mitrion, …)

Loop + data transformations, locality, communication and synchronization optimizations

Polyhedral Mapper

Raising

Lowering

Compiler Infrastructure

ISO C Front End

Code Gen/Back End

Low-Level Compilers

C...
The Polyhedral Model

- Linear algebraic model for representing loops
- Iteration spaces as polyhedra. Dependencies as polyhedral relations
- Statement-wise schedules: when + where a statement is executed
- Advantages:
 - Greater scope of programs optimized
 - Parametric programs optimized
 - Common representation for all mapping steps
 - Optimizations framed as (relatively) efficient problems for common mathematical solvers
- This allows compiler to optimize QR algorithms
 - in a way that is not possible with “classic” optimizers.
- Not specific to QR (i.e., not a “fastest QR in the West” library)
 - Allows high-level optimization of QR jointly with other kernels
Polyhedral Representation in a Nutshell

for (i=2; i<=M; i++) {
 for (j=0; j<=N; j+=2)
 A[i,N-j] = C[i-2,4*i+j/2];
 for (j=i; j<=N; j++)
 B[i,N-j] = A[i,j+1];
}

Iteration domains as polyhedra
\{ (i, j) \mid 2 \leq i \leq M, i \leq j \leq N \}

Affine schedules determine the execution order and place

Variables and access functions as polyhedra

Dependence relations as polyhedra tie these components together
Affine Scheduling

Affine scheduling: given statements $S_1, ..., S_n$ and dependence relations R_{ij}, find statement-wise affine schedule $\Theta = (\Theta_{S_1}, ..., \Theta_{S_n})$.

$\Theta_{S_i}(x)$ maps iteration x of statement S_i to its execution time.

A schedule is legal iff $\Theta_{S_i}(x) \geq \Theta_{S_j}(y), \quad (x, y) \in R_{ij}$ for all i, j.

"Iteration x of S_i depends on iteration y of $S_j"
Affine Scheduling and Space-Time Mappings

Generalization from schedules to \textbf{space-time} mappings:

\[
\Theta_{S_i}(x) = \begin{bmatrix}
 s_1(x) \\
 t_2(x) \\
 s_3(x) \\
 \vdots \\
 t_k(x)
\end{bmatrix}
\]

- Space dimensions (can be interpreted as processor element coordinates)
- Time dimensions determine execution order
Our Scheduling Algorithm

- Computes an affine schedule that *simultaneously*
 - maximizes the amount of coarse-grained parallelism (both synchronization-free and pipelined)
 - maximizes the amount of locality
- New integer linear programming formulation, based on ideas from Bondhugula et al. [PLDI’08] and Megiddo and Sarkar [SPAA ‘97]
- Our algorithm maximizes

\[
\sum_{l \in \text{loops}} w_l p_l + \sum_{e \in \text{loop edges}} u_e f_e
\]

- \(P_l = 1 \) iff loop \(l \) can be executed in parallel
- \(f_e = 1 \) iff loop edge \(e \) can be legally fused
- \(w_l \) and \(u_e \) are problem/architecture specific parameters
Parallelism Types and Loop Transformations

• Automatically exhibits \textit{wavefront hyperplanes} essential for:
 – \textit{Communication-free} parallelism
 – Pipelined parallelism with \textit{near-neighbor communications} thanks to \textit{permutable loops} (i.e. all dependences are forward)
 – Tiling for \textit{data locality} and task aggregation (register reuse)
• Finds hyperplanes automatically for \textit{whole programs}, not just QR
• Enables \textit{hierarchical parallelism} exploitation (FPGA, SMP, MPI …)
• General formulation only available since 2007; R-Stream improves it

Parallelism not always that trivial to exhibit
Tradeoff between Parallelism and Locality

Maximizing locality

```
for (i=0; i < N; i++) {
    for (j=0; j < N; j++) {
        x[i] = x[i] + B[j][i] * y[j] * beta;
    }
    x[i] = x[i] + z[i];
    doall (j = 0; j < N; j++)
    w[j] = w[j] + B[j][i] * x[i] * alpha;
}
```

Maximizing coarse-grained parallelism

```
doall (i = 0; i <= N + -1; i++)
doall (j = 0; j <= N + -1; j++)
doall (i = 0; i <= N + -1; i++)
    doall (j = 0; j <= N + -1; j++)
        w[i] = w[i] + B[i][j] * x[j] * alpha;
doall (i = 0; i <= N + -1; i++)
doall (j = 0; j <= N + -1; j++)
    x[i] = x[i] + B[j][i] * y[j] * beta;
doall (i = 0; i <= N + -1; i++)
x[i] = x[i] + z[i];
doall (i = 0; i <= N + -1; i++)
    doall (j = 0; j <= N + -1; j++)
        w[i] = w[i] + B[i][j] * x[j] * alpha;
```

Maximizing a weighted sum of parallelism and locality

```
doall (i = 0; i < N; i++)
doall (j = 0; j < N; j++)
    reduction_for (j = 0; j < N; j++)
        x[i] = x[i] + B[j][i] * y[j] * beta;
    x[i] = x[i] + z[i];
doall (i = 0; i < N; i++)
    reduction_for (j = 0; j <= N + -1; j++)
        w[i] = w[i] + B[i][j] * x[j] * alpha;
```

New optimization frames the tradeoffs between parallelism and locality in a single ILP.
Givens QR

- Uses Given’s rotations to “locally” zero out elements

\[G(i, j, \theta) = \begin{bmatrix}
1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\
0 & \cdots & \cos(\theta) & \cdots & \sin(\theta) & \ddots & 0 \\
\vdots & \ddots & \cdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & -\sin(\theta) & \cdots & \cos(\theta) & \cdots & 0 \\
\vdots & \ddots & \cdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1
\end{bmatrix} \]

HPEC 2008
#define N 1024

for (int k = 0; k < N-1; k++) {
 for (int i = N-2; i >= k; i--) {
 float a = A[i][k]; // S0
 float b = A[i+1][k]; // S1
 float d = sqrt(a*a+b*b);
 float c = a/d;
 float s = -b/d; // S2
 for (j = k; j < N; j++) {
 float t1 = A[i][j]*c + A[i+1][j]*s;
 float t2 = A[i+1][j]*c - A[i][j]*s;
 A[i][j] = t1;
 A[i+1][j] = t2; // S3
 }
 }
}

Givens QR in Plain Old Sequential C
Array Expansion

- Creates additional storage to ensure parallelism exploitation
- Removes “memory-based” dependences
- Allows exclusive focus on *producer-consumer* relationships
 - Discarding *producer-producer* conflicts

```c
#define N 1024

for (int k = 0; k < N-1; k++) {
    for (int i = N-2; i >= k; i--) {
        float a = A[i][k];       // S0
        float b = A[i+1][k];     // S1
        float d = sqrt(a*a+b*b);
        float c = a/d;
        float s = -b/d;          // S2
        for (j = k; j < N; j++) {
            float t1 = A[i][j]*c + A[i+1][j]*s;
            float t2 = A[i+1][j]*c - A[i][j]*s;
            A[i][j]   = t1;
            A[i+1][j] = t2;         // S3
        }
    }
}
```

Before

```c
for (int i = 0; i <= 1022; i++) {
    for (int j = 0; j <= - i + 1022; j++) {
        S0(a[i][j], A[1023-j][i]);
        S1(b[i][j], A[1022-j][i]);
        S2(a[i][j], b[i][j], c[i][j], s[i][j]);
        for (int k = 0; k <= - i + 1023; k++)
            S3(A[1022-j][i+k], A[1023-j][i+k],
               c[i][j], s[i][j]));
    }
}
```

After (simplified statement notation)

Applying the New Parallelization Algorithm

Before

\[
\begin{align*}
&\text{for } (\text{int } i = 0; i <= 1022; i++) \{ \\
&\quad \text{for } (\text{int } j = 0; j <= -i + 1022; j++) \{ \\
&\quad\quad \text{S0}(a[i][j], A[1023-j][i]); \\
&\quad\quad \text{S1}(b[i][j], A[1022-j][i]); \\
&\quad\quad \text{S2}(a[i][j], b[i][j], c[i][j], s[i][j]); \\
&\quad\quad \text{for } (\text{int } k = 0; k <= -i + 1023; k++) \\
&\quad\quad\quad \text{S3}(A[1022-j][i+k], A[1023-j][i+k], c[i][j], s[i][j]); \\
&\quad \} \\
&\}\end{align*}
\]

\[
\begin{align*}
&\Theta_{S0}(i, j)=[i, i+j] \\
&\Theta_{S1}(i, j)=[i, i+j] \\
&\Theta_{S2}(i, j)=[i, i+j] \\
&\Theta_{S3}(i, j, k)=[i, i+j, k]
\end{align*}
\]

Schedule

After

\[
\begin{align*}
&\text{for } (\text{int } i = 0; i <= 1022; i++) \{ \quad \text{// permutable} \\
&\quad \text{for } (\text{int } j = i; j <= 1022; j++) \{ \quad \text{// permutable} \\
&\quad\quad \text{S0}(a[i][-i+j], A[1023+i-j][i]); \\
&\quad\quad \text{S1}(b[i][-i+j], A[1022+i-j][i]); \\
&\quad\quad \text{S2}(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]); \\
&\quad\quad \text{doall } (\text{int } k = 0; k <= -i + 1023; k++) \\
&\quad\quad\quad \text{S3}(A[1022+i-j][i+k], \\
&\quad\quad\quad \quad A[1023+i-j][i+k], \\
&\quad\quad\quad \quad c[i][-i+j], s[i][-i+j]); \\
&\quad \} \\
&\}\end{align*}
\]

Wavefront parallelism and locality found (by virtue of “permutable” attribute), now exploitable in next steps …
2-D Analogy (Applying the Parallelization Algorithm)

Applying Schedule Transformation

Tiling along Schedule Hyperplanes

Skewing Tiles For Parallelism

Parallel Wavefront Parallel Wavefront
for (int i = 0; i <= 1022; i++) { // permutable
 for (int j = i; j <= 1022; j++) { // permutable
 S0(a[i][-i+j], A[1023+i-j][i]);
 S1(b[i][-i+j], A[1022+i-j][i]);
 S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
 doall (int k =
 S3(A[1022+i- i- c[i][-i+j]
)
 }
}

for (i = 0; i <= 960; i += 64) { // permutable
 lo0 = max(0, i + -15);
 gap1 = - lo0 & 15;
 for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable
 // tiled loops for S0, S1, S2 omitted
 doall (k=0; k <= min(-i+1023, 896); k += 128) {
 for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {
 for (m = max(l, j); m <= min(1022, j + 15); m++) {
 doall (n = k; n <= min(k+127, -l+1023); n++) {
 S3(A[1022 + l – m][l + n],
 A[1023 + l – m][l + n],
 c[l][-l+m],s[l][-l+m]);
 }
 }
 }
 }
 }
}

The locality implicit in the schedule permits a self-contained inner loop tile with a small, constrained memory footprint.
2-D Analogy (Tiling)

Applying Schedule Transformation

Tiling along Schedule Hyperplanes

Skewing Tiles For Parallelism
Skewing the Tile Space (↔ Pipelined Parallelism)

The wavefront parallelism in the schedule (the permutable loops) is skewed to create pipeline parallelism.
2-D Analogy (Skewing the Tile Space)

Applying Schedule Transformation

Tiling along Schedule Hyperplanes

Skewing Tiles For Parallelism

Parallel Wavefront

Parallel Wavefront

reservoir labs®

HPEC 2008
2-D Analogy (Summary)
Some Performance Results (Givens QR)

Execution time vs. Processors

Automatically parallelized
Speedup with increasing # of processors

Xeon 8-core (bi quad core) Dell 2 GHz
512x512 matrix
OpenMP produced at back end
gcc 4.2.3 –O6 –SSE3

1 processor version is without R-Stream
Modified Gram-Schmidt QR

for (int k = 0; k < N; k++) {
 float nrm = 0;
 for (int i = 0; i < M; i++)
 nrm += A[i][k] * A[i][k];
 R[k][k] = sqrt(nrm);
 for (int i = 0; i < M; i++)
 Q[i][k] = A[i][k] / R[k][k];
 for (int j = k+1; j < N; j++) {
 R[k][j] = 0;
 for (int i = 0; i < M; i++)
 R[k][j] += Q[i][k] * A[i][j];
 for (int i = 0; i < M; i++)
 A[i][j] -= Q[i][k] * R[k][j];
 }
}

This algorithm is also easy to raise to polyhedral representation

Plain Old Sequential C Input
Modified Gram-Schmidt QR Parallelized

```c
// prologue elided
for (int i = 0; i <= 1022; i++) {
    reduction_for (int j = 0; j <= 1023; j++)
        nrm += A[j][i] * A[j][i];
    nrm[i] = sqrt(R[i][i]);
    doall (int j = 0; j <= 1023; j++)
        Q[j][i] = A[j][i] / R[i][i];
    // barrier
    doall (int j = 0; j <= -i + 1022; j++) {
        for (int k = 0; k <= 1023; k++)
            R[i][1+i+j] += Q[k][i] * A[k][1+i+j];
        doall (int k = 0; k <= 1023; k++)
            A[i][j] -= Q[k][i] * R[i][1+i+j];
        // barrier
    }
    // barrier
} // epilogue elided
```

Result, after scheduling

Here, the scheduling algorithm finds coarse-grained parallelism
Householder QR

```c
#define M 1024
#define N 1024
void hh(float A[M][N], float Rdiag[N]) {
    int i, j, k;
    for (k = 0; k < N; k++) {
        float nrm = 0;
        for (i = k; i < M; i++)
            nrm = hypot(nrm, A[i][k]);
        if (nrm != 0) {
            if (A[k][k] < 0)
                nrm = -nrm;
            for (i = k; i < M; i++)
                A[i][k] = A[i][k] / nrm;
            A[k][k] = A[k][k] + 1;
            for (j = k+1; j < N; j++) {
                float s = 0;
                for (i = k; i < M; i++)
                    s = s + A[i][k]*A[i][j];
                s = -s/A[k][k];
                for (i = k; i < M; i++)
            }
            Rdiag[k] = -nrm;
        }
    }
}
```

Raising Householder to polyhedral representation requires “if conversion” approximations, due to data-dependent predicates

Plain Old Sequential C Input
Here, the parallelization algorithm finds fine-grained parallelism
Various Downstream Transformations

- Tiling to match granularity of tasks to core (e.g., local memory size)
- Placing the tiles onto 1D and 2D arrays of cores
- Managing distributed local memories
- Generating explicit DMA and synchronization operations
- Multibuffering to overlap computation and communication
- Partitioning code for heterogeneous targets (hosts, accelerators)
- Unrolling and jamming for improved locality (enable SIMDization)
- Converting to dataflow representation (for FPGA accelerators)
- Generating directives (e.g., OpenMP)

R-Stream also automates all of these transformations

Parallelization is only the first step!
Current Weaknesses and Future Work

- Array expansion is key to removing false dependencies
 - Current implementation cannot fully remove all
 - Better algorithms known and are in implementation
 - E.g., demand-driven array expansion
- Capacity of ILP solvers
- Tuning, capability of downstream phases
- Making the LLC “sing” (e.g., SIMDization)
- More detailed comparisons with hand-mapped versions in the literature
 - E.g., vs. known systolic forms for Givens, Gram-Schmidt
Conclusion and Remarks

- Polyhedral form admits more complex algorithms than classic optimizers admit
 - Including these three QR algorithms
- New scheduling algorithm has the ability to extract relevant complex schedules trading parallelism and locality
- Addresses new multicore and accelerator architectures
- Input programs expressed in plain C, without maps, etc.
- General representation and methods - a route for global optimization of even more complex codes
 - e.g., an entire filter
- Targets different execution models (distributed, hetero, SMP, …)
- R-Stream provides implementation of the mapping sequence

Enables tackling more advanced compiler research challenges