
r eser voi r abs

Parallelizing QR Decompositions Parallelizing QR Decompositions
with the Rwith the R--Stream CompilerStream Compiler

Allen Leung, Nicolas Vasilache, Benoît Meister,
David Wohlford, Richard Lethin

Reservoir Labs, Inc.

Unclassified, Distribution Statement A: Approved for public release; distribution is unlimited.
This material is based upon works supported by the Department of Defense under contract
numbers F30602-03-0033, W31P4Q-07-C-0147, W9113M-07-C-0072, W9113M-08-C-0146
and W31P4Q-08-C-0319. Any opinions, findings and conclusions expressed in this material
are those of Reservoir Labs, and do not necessarily reflect the views of the Department of

Defense.
Copyright © 2008 Reservoir Labs, Inc.

1HPEC 2008

Presenter
Presentation Notes
Thank our sponsors and program manager.

r eser voi r abs

OutlineOutline

• QR decompositions
• Architectures
• The R-Stream compiler
• The polyhedral model and the scheduling algorithm
• Unified tradeoff between parallelization and locality
• R-Stream QR decompositions:

– Givens
– Modified Gram-Schmidt
– Householder

• Current weaknesses and future work
• Conclusion and remarks

2HPEC 2008

r eser voi r abs

QR DecompositionsQR Decompositions

• Decompose X = QR, where Q is orthonormal (QT Q = I) and R is
upper triangular

• High performance of QR decomposition is crucial to many HPEC
applications, e.g., QR Recursive Least Squares (QR-RLS) in a
Space Time Adaptive Processing (STAP) radar

• Very efficient “hand crafted” systolic implementations exist, e.g.,
Nguyen et. al., HPEC 2005:

3HPEC 2008

Efficiencies of the systolic form
come from multidimensional,

wavefront parallelism and high
degrees of locality

Presenter
Presentation Notes
What kinds of applications? RT-STAP, etc.

Not as trivial as matrix multiply

Can be performed by different algorithms (Givens, etc.)

Highest speed versions (e.g., custom VLSI) based on McWhirter arrays

Slightly different context in those there, where we are updating a row “per sample”

But when we are targeting a core like e.g., Tilera

Keys to peformance is not just parallelism identification, it is also locality optimization

 - localize the production and consumption of values

 - allows keeping values in lower levels of the memory hierarchy, on chip

r eser voi r abs

Next Generation MultiNext Generation Multi--Core Processors/AcceleratorsCore Processors/Accelerators

4HPEC 2008

ClearSpeed CSX700

Tilera TILE64

Sony, Toshiba, IBM Cell Intel Larrabee

Efficient execution on such
devices requires finding mixed

coarse, fine, wavefront parallelism
and

high degrees of locality

Presenter
Presentation Notes
New slide about multicore architectures

Want to find parallelism

Want to find locality

Multiple kinds of parallelism – fine, coarse

Illustration with Tilera chips

But better – show ClearSpeed, Larrabee, Cell

r eser voi r abs

RR--Stream Compiler FlowStream Compiler Flow

5HPEC 2008

Compiler InfrastructureCompiler Infrastructure

Polyhedral
Mapper

Polyhedral
Mapper

ISO
 C

 Front End
ISO

 C
 Front End

C
ode G

en/B
ack End

C
ode G

en/B
ack End

A
PI

Low
-Level C

om
pilers

Low
-Level C

om
pilers

R-Stream

RaisingRaising LoweringLowering

…

Different APIs
and execution

models (C, OpenMP,
DMA, Mitrion, …)

Loop + data transformations,
locality, communication and

synchronization optimizations

r eser voi r abs

The Polyhedral ModelThe Polyhedral Model

• Linear algebraic model for representing loops
• Iteration spaces as polyhedra. Dependencies as polyhedral relations
• Statement-wise schedules: when + where a statement is executed
• Advantages:

– Greater scope of programs optimized
– Parametric programs optimized
– Common representation for all mapping steps
– Optimizations framed as (relatively) efficient problems for

common mathematical solvers
• This allows compiler to optimize QR algorithms

– in a way that is not possible with “classic” optimizers.
• Not specific to QR (i.e., not a “fastest QR in the West” library)

– Allows high-level optimization of QR jointly with other kernels

6HPEC 2008

r eser voi r abs 7HPEC 2008

Polyhedral Representation in a NutshellPolyhedral Representation in a Nutshell

for (i=2; i<=M; i++) {
for (j=0; j<=N; j+=2)

A[i,N-j] = C[i-2,4*i+j/2];
for (j=i; j<=N; j++)

B[i,N-j] = A[i,j+1];
}

1 0 0 0 0
0 1 0 1 0
0 0 0 0 1

1

i
j

M
N

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
10000
10010
00001

N
M
j
i

},2|),{(NjiMiji ≤≤≤≤
Iteration domains as polyhedra

Variables and access functions
as polyhedra

Affine schedules determine
the execution order and place

AB

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
10000
00100
00000
00010
10000
00001
00000

N
M
j
i

Dependence relations as polyhedra tie these components together

r eser voi r abs

Affine SchedulingAffine Scheduling

8HPEC 2008

i,jyxyx

xx

ijSS

S

ij

ji

i

 allfor),(,)()(legal is schedule A

timeexecution its toSstatement of iteration maps)(

),...,(schedule affine wise-statement Find

, relations dependence and S,...,S statementsgiven :

i

SS

n1

n1

Riff

Rscheduling Affine

∈ΘΘ

Θ

ΘΘ=Θ

;

“Iteration x of Si depends on iteration y of Sj ”
“after”

r eser voi r abs

Affine Scheduling and SpaceAffine Scheduling and Space--Time MappingsTime Mappings

9HPEC 2008

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Θ

)(

)(

:mappingstoschedulesfromtion Generaliza

3

2

1

xt

(x)s
(x)t
(x)s

x

k

Si

#

time-space

Space dimensions (can be interpreted
as processor element coordinates)

Time dimensions determine execution order

r eser voi r abs

Our Scheduling AlgorithmOur Scheduling Algorithm

• Computes an affine schedule that simultaneously
– maximizes the amount of coarse-grained parallelism (both

synchronization-free and pipelined)
– maximizes the amount of locality

• New integer linear programming formulation, based on ideas from
Bondhugula et al. [PLDI’08] and Megiddo and Sarkar [SPAA ‘97]

• Our algorithm maximizes

• Pl = 1 iff loop l can be executed in parallel
• fe = 1 iff loop edge e can be legally fused
• wl and ue are problem/architecture specific parameters

10HPEC 2008

∑∑
∈∈

+
edges loop

e
loops e

el
l

l fupw

benefits of improved locality
benefits of parallel execution

r eser voi r abs

Parallelism Types and Loop TransformationsParallelism Types and Loop Transformations

11HPEC 2008

• Automatically exhibits wavefront hyperplanes essential for:
– Communication-free parallelism
– Pipelined parallelism with near-neighbor communications thanks

to permutable loops (i.e. all dependences are forward)
– Tiling for data locality and task aggregation (register reuse)

• Finds hyperplanes automatically for whole programs, not just QR
• Enables hierarchical parallelism exploitation (FPGA, SMP, MPI …)
• General formulation only available since 2007; R-Stream improves it

Parallelism not always that trivial to exhibit

r eser voi r abs

Tradeoff between Parallelism and LocalityTradeoff between Parallelism and Locality

12HPEC 2008

for (i=0; i < N; i++) {
forfor (j=0; j < N; j++) {
B[j][i] = A[j][i] + u1[j] * v1[i] +

u2[j] * v2[i];
x[i] = x[i] + B[j][i] * y[j] * beta

}
x[i] = x[i] + z[i];
doall (j = 0; j < N; j++)

w[j] = w[j] + B[j][i] * x[i] * alpha;
}

doall (i = 0; i < N; i++) {
doall (j = 0; j < N; j++)

B[j][i] = A[j][i] + u1[j] * v1[i] +
u2[j] * v2[i];

reduction_for (j = 0; j < N; j++)
x[i] = x[i] + B[j][i] * y[j] * beta;

x[i] = x[i] + z[i];
}
doall (i = 0; i < N; i++)

reduction_for (j = 0; j <= N + -1; j++)
w[i] = w[i] + B[i][j] * x[j] * alpha;

Maximizing locality

Maximizing a weighted sum of
parallelism and locality

doall (i = 0; i <= N + -1; i++)
doall (j = 0; j <= N + -1; j++)

B[i][j] = A[i][j] + u1[i] * v1[j] +
u2[i] * v2[j];

doall (i = 0; i <= N + -1; i++)
for (j = 0; j <= N + -1; j++)

x[i] = x[i] + B[j][i] * y[j] * beta;
doall (i = 0; i <= N + -1; i++)

x[i] = x[i] + z[i];
doall (i = 0; i <= N + -1; i++)

for (j = 0; j <= N + -1; j++)
w[i] = w[i] + B[i][j] * x[j] * alpha;

Maximizing coarse-grained parallelism

New optimization frames
the tradeoffs between

parallelism and locality in
a single ILP

r eser voi r abs

Givens QRGivens QR

• Uses Given’s rotations to “locally” zero out elements

13HPEC 2008

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
=

1000

0)cos()sin(0

0)sin()cos(0

0001

),,(

"""
#%##

"""
##%##

%""
###%#

""…

θθ

θθ
θjiG

i

i

j

j

r eser voi r abs

Givens QR in Plain Old Sequential CGivens QR in Plain Old Sequential C

14HPEC 2008

#define N 1024

for (int k = 0; k < N-1; k++) {
for (int i = N-2; i >= k; i--) {

float a = A[i][k]; // S0
float b = A[i+1][k]; // S1
float d = sqrt(a*a+b*b);
float c = a/d;
float s = -b/d; // S2
for (j = k; j < N; j++) {

float t1 = A[i][j]*c + A[i+1][j]*s;
float t2 = A[i+1][j]*c - A[i][j]*s;
A[i][j] = t1;
A[i+1][j] = t2; // S3

}
}

}

Presenter
Presentation Notes
Emphasize

Plain old sequential C

Note that this is different from the systolic / recursive algorithm shown in the earlier slide, which does incremental updates. The static control program form can represent that incremental update pipeline, too.

Lincoln Labs is the mecca of Givens QR.

You might find people focusing on the handling of the sqrt, e.g., in the Nguyen paper, they mention that they actually break up the SQRTs to bit-pipeline it.

r eser voi r abs

Array ExpansionArray Expansion

15HPEC 2008

• Creates additional storage to ensure parallelism exploitation
• Removes “memory-based” dependences
• Allows exclusive focus on producer-consumer relationships

• Discarding producer-producer conflicts
#define N 1024

for (int k = 0; k < N-1; k++) {
for (int i = N-2; i >= k; i--) {
float a = A[i][k]; // S0
float b = A[i+1][k]; // S1
float d = sqrt(a*a+b*b);
float c = a/d;
float s = -b/d; // S2
for (j = k; j < N; j++) {
float t1 = A[i][j]*c + A[i+1][j]*s;
float t2 = A[i+1][j]*c - A[i][j]*s;
A[i][j] = t1;
A[i+1][j] = t2; // S3

}
}

}

for (int i = 0; i <= 1022; i++) {
for (int j = 0; j <= - i + 1022; j++) {
S0(a[i][j], A[1023-j][i]);
S1(b[i][j], A[1022-j][i]);
S2(a[i][j], b[i][j], c[i][j], s[i][j]);
for (int k = 0; k <= - i + 1023; k++)
S3(A[1022-j][i+k], A[1023-j][i+k],

c[i][j], s[i][j]));
}

}

Before
After (simplified statement notation)

r eser voi r abs

Applying the New Parallelization AlgorithmApplying the New Parallelization Algorithm

16HPEC 2008

for (int i = 0; i <= 1022; i++) { // permutable
for (int j = i; j <= 1022; j++) { // permutable
S0(a[i][-i+j], A[1023+i-j][i]);
S1(b[i][-i+j], A[1022+i-j][i]);
S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
doall (int k = 0; k <= - i + 1023; k++)
S3(A[1022+i-j][i+k],

A[1023+i-j][i+k],
c[i][-i+j], s[i][-i+j]);

}
}

],,[),,(
],[),(
],[),(
],[),(

3

2

1

0

kjiikji
jiiji
jiiji
jiiji

S

S

S

S

+=Θ
+=Θ
+=Θ
+=Θforfor (int i = 0; i <= 1022; i++) {

forfor (int j = 0; j <= - i + 1022; j++) {
S0(a[i][j], A[1023-j][i]);
S1(b[i][j], A[1022-j][i]);
S2(a[i][j], b[i][j], c[i][j], s[i][j]);
forfor (int k = 0; k <= - i + 1023; k++)
S3(A[1022-j][i+k], A[1023-j][i+k],

c[i][j], s[i][j]));
}

}

Before

After

Schedule

Wavefront parallelism and
locality found (by virtue of

“permutable” attribute),
now exploitable in next

steps …

Presenter
Presentation Notes
What does it mean that the loops are permutable?

r eser voi r abs

22--D Analogy (Applying the Parallelization Algorithm)D Analogy (Applying the Parallelization Algorithm)

17HPEC 2008

Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles
For Parallelism

r eser voi r abs

TilingTiling

18HPEC 2008

for (int i = 0; i <= 1022; i++) { // permutable
for (int j = i; j <= 1022; j++) { // permutable
S0(a[i][-i+j], A[1023+i-j][i]);
S1(b[i][-i+j], A[1022+i-j][i]);
S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
doall (int k = 0; k <= - i + 1023; k++)
S3(A[1022+i-j][i+k],

A[1023+i-j][i+k],
c[i][-i+j], s[i][-i+j]);

}
}

for (i = 0; i <= 960; i += 64) { // permutable
lo0 = max(0, i + -15);
gap1 = - lo0 & 15;
for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable

// tiled loops for S0, S1, S2 omitted
doall(k=0; k <= min(-i+1023, 896); k += 128) {
for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {

for (m = max(l, j); m <= min(1022, j + 15); m++) {
doall (n = k; n <= min(k+127, -l+1023); n++) {

S3(A[1022 + l – m][l + n],
A[1023 + l – m][l + n],
c[l][-l+m],s[l][-l+m]);

}
}

}
}

}
}

The locality implicit in the schedule
permits a self-contained inner loop tile

with a small, constrained memory
footprint

Before

After

r eser voi r abs

22--D Analogy (Tiling)D Analogy (Tiling)

19HPEC 2008

Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles
For Parallelism

r eser voi r abs

Skewing the Tile Space (Skewing the Tile Space (Pipelined ParallelismPipelined Parallelism))

20HPEC 2008

for (i = 0; i <= 960; i += 64) { // permutable
lo0 = max(0, i + -15);
gap1 = - lo0 & 15;
for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable
// tiled loops for S0, S1, S2 omitted
doall(k=0; k <= min(-i+1023, 896); k += 128) {
for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {
for (m = max(l, j); m <= min(1022, j + 15); m++) {
doall (n = k; n <= min(k+127, -l+1023); n++) {

S3(A[1022 + l – m][l + n],
A[1023 + l – m][l + n],
c[l][-l+m],s[l][-l+m]);

}
}

}
}

}
}

for (int i = 0; i <= 78; i++) {
doall (int j = max(i-15, (4*i+ 4) / 5); j <= min(i, 63); j++) {
// Tiled loops for S1, S2, S3 omitted
doall (k = 0; k <= min(7, (- i + j + 15) / 2); k++) {
for (l = 64 * i -64 * j;

l <= min(64*i-64*j+63, 16*j+15, 1022); l++) {
for (m=max(l, 16*j); m <= min(1022, 16 * j + 15); m++) {
doall (n = 128 * k; n <= min(128*k+127, -l+1023); n++)

{
S3(A[1022 + l – m][l + n],

A[1023 + l – m][l + n],
c[l][-l+m],
s[l][-l+m]);

}
}

}
}

}
}

The wavefront parallelism in the schedule
(the permutable loops) is skewed to create

pipeline parallelism

Before

After

r eser voi r abs

22--D Analogy (Skewing the Tile Space)D Analogy (Skewing the Tile Space)

21HPEC 2008

Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles
For Parallelism

r eser voi r abs

22--D Analogy (Summary)D Analogy (Summary)

22HPEC 2008

r eser voi r abs

Some Performance Results (Givens QR)Some Performance Results (Givens QR)

23HPEC 2008

Seconds

Processors
Xeon 8-core (bi quad core) Dell 2 GHz
512x512 matrix
OpenMP produced at back end
gcc 4.2.3 –O6 –SSE3

1 processor version is without R-Stream

Automatically parallelized
Speedup with increasing # of

processors

r eser voi r abs

Modified GramModified Gram--Schmidt QRSchmidt QR

24HPEC 2008

for (int k = 0; k < N; k++) {
float nrm = 0;
for (int i = 0; i < M; i++)
nrm += A[i][k] * A[i][k];

R[k][k] = sqrt(nrm);
for (int i = 0; i < M; i++)
Q[i][k] = A[i][k] / R[k][k];

for (int j = k+1; j < N; j++) {
R[k][j] = 0;
for (int i = 0; i < M; i++)
R[k][j] += Q[i][k] * A[i][j];

for (int i = 0; i < M; i++)
A[i][j] -= Q[i][k] * R[k][j];

}
}

Plain Old Sequential C Input

This algorithm is also easy to
raise to polyhedral

representation

r eser voi r abs

Modified GramModified Gram--Schmidt QR Parallelized Schmidt QR Parallelized

25HPEC 2008

// prologue elided
for (int i = 0; i <= 1022; i++) {
reduction_for (int j = 0; j <= 1023; j++)

nrm += A[j][i] * A[j][i];
nrm[i] = sqrt(R[i][i]);
doall (int j = 0; j <= 1023; j++)

Q[j][i] = A[j][i] / R[i][i];
// barrier
doall (int j = 0; j <= - i + 1022; j++) {

for (int k = 0; k <= 1023; k++)
R[i][1+i+j] += Q[k][i] * A[k][1+i+j];

doall (int k = 0; k <= 1023; k++)
A[i][j] -= Q[k][i] * R[i][1+i+j];

// barrier
}
// barrier

}
// epilogue elided

Result, after scheduling

Here, the scheduling algorithm
finds coarse-grained parallelism

r eser voi r abs

Householder QRHouseholder QR

26HPEC 2008

#define M 1024
#define N 1024
void hh(float A[M][N], float Rdiag[N]) {

int i, j, k;
for (k = 0; k < N; k++) {

float nrm = 0;
for (i = k; i < M; i++)

nrm = hypot(nrm, A[i][k]);
if (nrm != 0) {

if (A[k][k] < 0)
nrm = -nrm;

for (i = k; i < M; i++) {
A[i][k] = A[i][k] / nrm;

A[k][k] = A[k][k] + 1;
for (j = k+1; j < N; j++) {

float s = 0;
for (i = k; i < M; i++)

s = s + A[i][k]*A[i][j];
s = -s/A[k][k];
for (i = k; i < M; i++)

A[i][j] = A[i][j] + s*A[i][k];
}

}
Rdiag[k] = -nrm;

}
}

Plain Old Sequential C Input

Raising Householder to polyhedral
representation requires “if conversion”
approximations, due to data-dependent

predicates

r eser voi r abs

Householder QR ParallelizedHouseholder QR Parallelized

27HPEC 2008

// prologue elided
for (int i = 0; i <= 1022; i++)

for (int j = 0; j <= - i + 1023; j++)
_hh_1(_v1[i],nrm[i]);
_hh_2(A[i + j, i],_v1[i],_v2[i, j]);
_hh_3(_v2[i, j],nrm[i]);

_hh_4(nrm[i],_p1[i]);
if (_p1[i])

_hh_5(A[i, i],_v1[i],_v3[i]);
_hh_6(nrm[i],_v3[i]);
// barrier
doall (int j = 0; j <= - i + 1022; j++)

_hh_7(A[i + j, i],nrm[i]);
_hh_9(s[i, j]);

// barrier
_hh_7(A[1023, i],nrm[i]);
_hh_8(A[i, i]);
// barrier
doall (int j = 0; j <= - i + 1022; j++)

_hh_11(A[i, i],_v4[i, j]);
for (int k = 0; k <= - i + 1023; k++)

_hh_10(A[i + k, i],A[i + k, 1 + i + j],<>s[i, j]);

_hh_12(s[i, j],_v4[i, j],_v5[i, j]);
doall (int k = 0; k <= - i + 1023; k++)

_hh_13(A[i + k, 1 + i + j],A[i + k, i],_v5[i, j]);
// epilogue elided

Here, the parallelization algorithm finds
fine-grained parallelism

Result, after scheduling and tiling

r eser voi r abs

Various Downstream TransformationsVarious Downstream Transformations

• Tiling to match granularity of tasks to core (e.g., local memory size)
• Placing the tiles onto 1D and 2D arrays of cores
• Managing distributed local memories
• Generating explicit DMA and synchronization operations
• Multibuffering to overlap computation and communication
• Partitioning code for heterogeneous targets (hosts, accelerators)
• Unrolling and jamming for improved locality (enable SIMDization
• Converting to dataflow representation (for FPGA accelerators)
• Generating directives (e.g., OpenMP)

28HPEC 2008

R-Stream also automates all of these transformations

Parallelization is only the first step!

r eser voi r abs

Current Weaknesses and Future WorkCurrent Weaknesses and Future Work

• Array expansion is key to removing false dependencies
– Current implementation cannot fully remove all
– Better algorithms known and are in implementation
– E.g., demand-driven array expansion

• Capacity of ILP solvers
• Tuning, capability of downstream phases
• Making the LLC “sing” (e.g., SIMDization)

• More detailed comparisons with hand-mapped versions in the
literature
– E.g., vs. known systolic forms for Givens, Gram-Schmidt

29HPEC 2008

r eser voi r abs

Conclusion and RemarksConclusion and Remarks

• Polyhedral form admits more complex algorithms than classic
optimizers admit
– Including these three QR algorithms

• New scheduling algorithm has the ability to extract relevant complex
schedules trading parallelism and locality

• Addresses new multicore and accelerator architectures
• Input programs expressed in plain C, without maps, etc.
• General representation and methods - a route for global optimization

of even more complex codes
– e.g., an entire filter

• Targets different execution models (distributed, hetero, SMP, …)
• R-Stream provides implementation of the mapping sequence

30HPEC 2008

Enables tackling more advanced compiler research challenges

Presenter
Presentation Notes
What we’ve showed

The ability to generate a parallel program with complicated multiple degrees of parallelism and locality management from a sequential unannotated C source program.

The applicability of these techniques to the problem of QR decomposition

This happens vs. previous “classic” optimizations due to greater scope of the program representation model

Imperfect loop nests

Parametric extents and array access functions

Accessible from C

 Reported the existence of a technique that integrates optimization incorporating different kinds of parallelization optimization and locality management in a common framework.

Showed the kinds of parallelism that this technique identifies for 3 different algorithms for QR decomposition.

Described how this is relevant to new multicore processing architectures

	Parallelizing QR Decompositions �with the R-Stream Compiler
	Outline
	QR Decompositions
	Next Generation Multi-Core Processors/Accelerators
	R-Stream Compiler Flow
	The Polyhedral Model
	Polyhedral Representation in a Nutshell
	Affine Scheduling
	Affine Scheduling and Space-Time Mappings
	Our Scheduling Algorithm
	Parallelism Types and Loop Transformations
	Tradeoff between Parallelism and Locality
	Givens QR
	Givens QR in Plain Old Sequential C
	Array Expansion
	Applying the New Parallelization Algorithm
	2-D Analogy (Applying the Parallelization Algorithm)
	Tiling
	2-D Analogy (Tiling)
	Skewing the Tile Space ( Pipelined Parallelism)
	2-D Analogy (Skewing the Tile Space)
	2-D Analogy (Summary)
	Some Performance Results (Givens QR)
	Modified Gram-Schmidt QR
	Modified Gram-Schmidt QR Parallelized
	Householder QR
	Householder QR Parallelized
	Various Downstream Transformations
	Current Weaknesses and Future Work
	Conclusion and Remarks

