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• QR decompositions
• Architectures
• The R-Stream compiler
• The polyhedral model and the scheduling algorithm
• Unified tradeoff between parallelization and locality
• R-Stream QR decompositions:

– Givens
– Modified Gram-Schmidt
– Householder

• Current weaknesses and future work
• Conclusion and remarks
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QR DecompositionsQR Decompositions

• Decompose X = QR, where Q is orthonormal  (QT Q = I) and R is 
upper triangular

• High performance of QR decomposition is crucial to many HPEC 
applications, e.g., QR Recursive Least Squares (QR-RLS) in a 
Space Time Adaptive Processing (STAP) radar

• Very efficient “hand crafted” systolic implementations exist, e.g., 
Nguyen et. al., HPEC 2005:
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Efficiencies of the systolic form
come from multidimensional,

wavefront parallelism and high
degrees of locality

Presenter
Presentation Notes
What kinds of applications?  RT-STAP, etc.
Not as trivial as matrix multiply
Can be performed by different algorithms (Givens, etc.)
Highest speed versions (e.g., custom VLSI) based on McWhirter arrays
Slightly different context in those there, where we are updating a row “per sample”
But when we are targeting a core like e.g., Tilera
Keys to peformance is not just parallelism identification, it is also locality optimization
   - localize the production and consumption of values
   - allows keeping values in lower levels of the memory hierarchy, on chip
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Next Generation MultiNext Generation Multi--Core Processors/AcceleratorsCore Processors/Accelerators

4HPEC 2008

ClearSpeed CSX700

Tilera TILE64

Sony, Toshiba, IBM Cell Intel Larrabee

Efficient execution on such
devices requires finding mixed 

coarse, fine, wavefront parallelism 
and

high degrees of locality

Presenter
Presentation Notes
New slide about multicore architectures

Want to find parallelism

Want to find locality

Multiple kinds of parallelism – fine, coarse

Illustration with Tilera chips

But better – show ClearSpeed, Larrabee, Cell
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RR--Stream Compiler FlowStream Compiler Flow
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Compiler InfrastructureCompiler Infrastructure
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The Polyhedral ModelThe Polyhedral Model

• Linear algebraic model for representing loops
• Iteration spaces as polyhedra. Dependencies as polyhedral relations 
• Statement-wise schedules: when + where a statement is executed
• Advantages:

– Greater scope of programs optimized
– Parametric programs optimized
– Common representation for all mapping steps
– Optimizations framed as (relatively) efficient problems for 

common mathematical solvers
• This allows compiler to optimize QR algorithms 

– in a way that is not possible with “classic” optimizers.
• Not specific to QR (i.e., not a “fastest QR in the West” library)

– Allows high-level optimization of QR jointly with other kernels

6HPEC 2008
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Polyhedral Representation in a NutshellPolyhedral Representation in a Nutshell

for (i=2; i<=M; i++) {
for (j=0; j<=N; j+=2)

A[i,N-j] = C[i-2,4*i+j/2];
for (j=i; j<=N; j++) 

B[i,N-j] = A[i,j+1];
}
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Affine SchedulingAffine Scheduling
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Affine Scheduling and SpaceAffine Scheduling and Space--Time MappingsTime Mappings
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Our Scheduling AlgorithmOur Scheduling Algorithm

• Computes an affine schedule that simultaneously
– maximizes the amount of coarse-grained parallelism (both 

synchronization-free and pipelined) 
– maximizes the amount of locality

• New integer linear programming formulation, based on ideas from 
Bondhugula et al. [PLDI’08] and Megiddo and Sarkar [SPAA ‘97]

• Our algorithm maximizes 

• Pl = 1 iff loop l can be executed in parallel
• fe = 1 iff loop edge e can be legally fused
• wl and ue are problem/architecture specific parameters

10HPEC 2008

∑∑
∈∈

+
edges loop

e
loops e

el
l

l fupw

benefits of improved locality
benefits of parallel execution



r eser voi r abs

Parallelism Types and Loop TransformationsParallelism Types and Loop Transformations
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• Automatically exhibits wavefront hyperplanes essential for:
– Communication-free parallelism
– Pipelined parallelism with near-neighbor communications thanks 

to permutable loops (i.e. all dependences are forward)
– Tiling for data locality and task aggregation (register reuse)

• Finds hyperplanes automatically for whole programs, not just QR
• Enables hierarchical parallelism exploitation (FPGA, SMP, MPI …)
• General formulation only available since 2007; R-Stream improves it

Parallelism not always that trivial to exhibit
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Tradeoff between Parallelism and LocalityTradeoff between Parallelism and Locality
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for (i=0; i < N; i++) {
forfor (j=0; j < N; j++) {
B[j][i] = A[j][i] + u1[j] * v1[i] + 

u2[j] * v2[i];
x[i] = x[i] + B[j][i] * y[j] * beta

}
x[i] = x[i] + z[i];
doall (j = 0; j < N; j++)

w[j] = w[j] + B[j][i] * x[i] * alpha;
}

doall (i = 0; i < N; i++) {
doall (j = 0; j < N; j++) 

B[j][i] = A[j][i] + u1[j] * v1[i] + 
u2[j] * v2[i];

reduction_for (j = 0; j < N; j++) 
x[i] = x[i] + B[j][i] * y[j] * beta;

x[i] = x[i] + z[i];
}
doall (i = 0; i < N; i++)

reduction_for (j = 0; j <= N + -1; j++)
w[i] = w[i] + B[i][j] * x[j] * alpha;

Maximizing locality

Maximizing a weighted sum of 
parallelism and locality

doall (i = 0; i <= N + -1; i++) 
doall (j = 0; j <= N + -1; j++) 

B[i][j] = A[i][j] + u1[i] * v1[j] + 
u2[i] * v2[j];

doall (i = 0; i <= N + -1; i++) 
for (j = 0; j <= N + -1; j++) 

x[i] = x[i] + B[j][i] * y[j] * beta;
doall (i = 0; i <= N + -1; i++) 

x[i] = x[i] + z[i]; 
doall (i = 0; i <= N + -1; i++) 

for (j = 0; j <= N + -1; j++) 
w[i] = w[i] + B[i][j] * x[j] * alpha;

Maximizing coarse-grained parallelism

New optimization frames 
the tradeoffs between 

parallelism and locality in 
a single ILP
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Givens QRGivens QR

• Uses Given’s rotations to “locally” zero out elements
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Givens QR in Plain Old Sequential CGivens QR in Plain Old Sequential C
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#define N 1024

for (int k = 0; k < N-1; k++) {
for (int i = N-2; i >= k; i--) {

float a = A[i][k];       // S0
float b = A[i+1][k];     // S1
float d = sqrt(a*a+b*b); 
float c = a/d; 
float s = -b/d; // S2
for (j = k; j < N; j++) {

float t1 = A[i][j]*c + A[i+1][j]*s;
float t2 = A[i+1][j]*c - A[i][j]*s;
A[i][j]   = t1;
A[i+1][j] = t2;  // S3

}
}

}

Presenter
Presentation Notes
Emphasize

Plain old sequential C

Note that this is different from the systolic / recursive algorithm shown in the earlier slide, which does incremental updates.  The static control program form can represent that incremental update pipeline, too.  

Lincoln Labs is the mecca of Givens QR.   

You might find people focusing on the handling of the sqrt, e.g., in the Nguyen paper, they mention that they actually break up the SQRTs to bit-pipeline it.
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Array ExpansionArray Expansion
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• Creates additional storage to ensure parallelism exploitation
• Removes “memory-based” dependences
• Allows exclusive focus on producer-consumer relationships 

• Discarding producer-producer conflicts
#define N 1024

for (int k = 0; k < N-1; k++) {
for (int i = N-2; i >= k; i--) {
float a = A[i][k];       // S0
float b = A[i+1][k];     // S1
float d = sqrt(a*a+b*b); 
float c = a/d; 
float s = -b/d; // S2
for (j = k; j < N; j++) {
float t1 = A[i][j]*c + A[i+1][j]*s;
float t2 = A[i+1][j]*c - A[i][j]*s;
A[i][j]   = t1;
A[i+1][j] = t2;  // S3

}
}

}

for (int i = 0; i <= 1022; i++) {
for (int j = 0; j <= - i + 1022; j++) {
S0(a[i][j], A[1023-j][i]);
S1(b[i][j], A[1022-j][i]);
S2(a[i][j], b[i][j], c[i][j], s[i][j]);
for (int k = 0; k <= - i + 1023; k++)
S3(A[1022-j][i+k], A[1023-j][i+k], 

c[i][j], s[i][j]));
}

}

Before
After (simplified statement notation)
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Applying the New Parallelization AlgorithmApplying the New Parallelization Algorithm
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for (int i = 0; i <= 1022; i++) {     // permutable 
for (int j = i; j <= 1022; j++) {   // permutable
S0(a[i][-i+j], A[1023+i-j][i]);
S1(b[i][-i+j], A[1022+i-j][i]);
S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
doall (int k = 0; k <= - i + 1023; k++)        
S3(A[1022+i-j][i+k],

A[1023+i-j][i+k],
c[i][-i+j], s[i][-i+j]);

}
}
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+=Θforfor (int i = 0; i <= 1022; i++) {

forfor (int j = 0; j <= - i + 1022; j++) {
S0(a[i][j], A[1023-j][i]);
S1(b[i][j], A[1022-j][i]);
S2(a[i][j], b[i][j], c[i][j], s[i][j]);
forfor (int k = 0; k <= - i + 1023; k++)
S3(A[1022-j][i+k], A[1023-j][i+k], 

c[i][j], s[i][j]));
}

}

Before

After

Schedule

Wavefront parallelism and 
locality found (by virtue of 

“permutable” attribute), 
now exploitable in next 

steps …

Presenter
Presentation Notes
What does it mean that the loops are permutable?
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22--D Analogy (Applying the Parallelization Algorithm)D Analogy (Applying the Parallelization Algorithm)
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Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles 
For  Parallelism
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TilingTiling
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for (int i = 0; i <= 1022; i++) {     // permutable 
for (int j = i; j <= 1022; j++) {   // permutable
S0(a[i][-i+j], A[1023+i-j][i]);
S1(b[i][-i+j], A[1022+i-j][i]);
S2(a[i][-i+j], b[i][-i+j], c[i][-i+j], s[i][-i+j]);
doall (int k = 0; k <= - i + 1023; k++)        
S3(A[1022+i-j][i+k],

A[1023+i-j][i+k],
c[i][-i+j], s[i][-i+j]);

}
}

for (i = 0; i <= 960; i += 64) { // permutable
lo0 = max(0, i + -15);
gap1 = - lo0 & 15;
for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable

// tiled loops for S0, S1, S2 omitted
doall(k=0; k <= min(-i+1023, 896); k += 128) {
for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {

for (m = max(l, j); m <= min(1022, j + 15); m++) {
doall (n = k; n <= min(k+127, -l+1023); n++) {

S3(A[1022 + l – m][l + n],
A[1023 + l – m][l + n],
c[l][-l+m],s[l][-l+m]);

}
}

}
}

}
}

The locality implicit in the schedule 
permits a self-contained inner loop tile 

with a small, constrained memory 
footprint

Before

After



r eser voi r abs

22--D Analogy (Tiling)D Analogy (Tiling)
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Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles 
For  Parallelism
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Skewing the Tile Space (Skewing the Tile Space ( Pipelined ParallelismPipelined Parallelism))
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for (i = 0; i <= 960; i += 64) { // permutable
lo0 = max(0, i + -15);
gap1 = - lo0 & 15;
for (j = lo0 + gap1; j <= 1008; j += 16) { // permutable
// tiled loops for S0, S1, S2 omitted
doall(k=0; k <= min(-i+1023, 896); k += 128) {
for (l=i; l <= min(i+63,1022,j+15,-k+1023); l++) {
for (m = max(l, j); m <= min(1022, j + 15); m++) {
doall (n = k; n <= min(k+127, -l+1023); n++) {

S3(A[1022 + l – m][l + n],
A[1023 + l – m][l + n],
c[l][-l+m],s[l][-l+m]);

}
}

}
}

}
}

for (int i = 0; i <= 78; i++) {
doall (int j = max(i-15, (4*i+ 4) / 5); j <= min(i, 63); j++) {
// Tiled loops for S1, S2, S3 omitted
doall (k = 0; k <= min(7, ( - i + j + 15) / 2); k++) {
for (l = 64 * i -64 * j; 

l <= min(64*i-64*j+63, 16*j+15, 1022); l++) {
for (m=max(l, 16*j); m <= min(1022, 16 * j + 15); m++) {
doall (n = 128 * k; n <= min(128*k+127, -l+1023); n++) 

{
S3(A[1022 + l – m][l + n],

A[1023 + l – m][l + n],
c[l][-l+m],
s[l][-l+m]);

}
}

}
}

}
}

The wavefront parallelism in the schedule 
(the permutable loops) is skewed to create 

pipeline parallelism

Before

After
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22--D Analogy (Skewing the Tile Space)D Analogy (Skewing the Tile Space)
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Applying Schedule
Transformation

Tiling along Schedule
Hyperplanes

Skewing Tiles 
For  Parallelism
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22--D Analogy (Summary)D Analogy (Summary)
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Some Performance Results (Givens QR)Some Performance Results (Givens QR)
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Seconds

Processors
Xeon 8-core (bi quad core) Dell 2 GHz
512x512 matrix
OpenMP produced at back end
gcc 4.2.3 –O6 –SSE3

1 processor version is without R-Stream

Automatically parallelized
Speedup with increasing # of 

processors
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Modified GramModified Gram--Schmidt QRSchmidt QR
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for (int k = 0; k < N; k++) {
float nrm = 0;
for (int i = 0; i < M; i++)
nrm += A[i][k] * A[i][k];

R[k][k] = sqrt(nrm);
for (int i = 0; i < M; i++)
Q[i][k] = A[i][k] / R[k][k];

for (int j = k+1; j < N; j++) {
R[k][j] = 0;
for (int i = 0; i < M; i++)
R[k][j] += Q[i][k] * A[i][j];

for (int i = 0; i < M; i++)
A[i][j] -= Q[i][k] * R[k][j];

}
}

Plain Old Sequential C Input

This algorithm is also easy to 
raise to polyhedral 

representation
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Modified GramModified Gram--Schmidt QR Parallelized Schmidt QR Parallelized 
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// prologue elided
for (int i = 0; i <= 1022; i++) {
reduction_for (int j = 0; j <= 1023; j++)

nrm += A[j][i] * A[j][i]; 
nrm[i] = sqrt(R[i][i]);
doall (int j = 0; j <= 1023; j++)

Q[j][i] = A[j][i] / R[i][i];
// barrier
doall (int j = 0; j <= - i + 1022; j++) {

for (int k = 0; k <= 1023; k++)
R[i][1+i+j] += Q[k][i] * A[k][1+i+j];

doall (int k = 0; k <= 1023; k++)
A[i][j] -= Q[k][i] * R[i][1+i+j];

// barrier
}
// barrier

}
// epilogue elided

Result, after scheduling

Here, the scheduling algorithm 
finds coarse-grained parallelism
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Householder QRHouseholder QR
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#define M 1024
#define N 1024
void hh(float A[M][N], float Rdiag[N]) {

int i, j, k;
for (k = 0; k < N; k++) {

float nrm = 0;
for (i = k; i < M; i++) 

nrm = hypot(nrm, A[i][k]);
if (nrm != 0) {

if (A[k][k] < 0) 
nrm = -nrm;

for (i = k; i < M; i++) {
A[i][k] = A[i][k] / nrm;

A[k][k] = A[k][k] + 1;
for (j = k+1; j < N; j++) {

float s = 0;
for (i = k; i < M; i++) 

s = s + A[i][k]*A[i][j];
s = -s/A[k][k];
for (i = k; i < M; i++) 

A[i][j] = A[i][j] + s*A[i][k];
}

}
Rdiag[k] = -nrm;

}
}

Plain Old Sequential C Input

Raising Householder to polyhedral 
representation requires “if conversion” 
approximations, due to data-dependent 

predicates
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Householder QR ParallelizedHouseholder QR Parallelized
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// prologue elided
for (int i = 0; i <= 1022; i++)

for (int j = 0; j <= - i + 1023; j++)
_hh_1(_v1[i],nrm[i]);
_hh_2(A[i + j, i],_v1[i],_v2[i, j]);
_hh_3(_v2[i, j],nrm[i]);

_hh_4(nrm[i],_p1[i]);
if (_p1[i])

_hh_5(A[i, i],_v1[i],_v3[i]);
_hh_6(nrm[i],_v3[i]);
// barrier
doall (int j = 0; j <= - i + 1022; j++)

_hh_7(A[i + j, i],nrm[i]);
_hh_9(s[i, j]);

// barrier
_hh_7(A[1023, i],nrm[i]);
_hh_8(A[i, i]);
// barrier
doall (int j = 0; j <= - i + 1022; j++)

_hh_11(A[i, i],_v4[i, j]);
for (int k = 0; k <= - i + 1023; k++)

_hh_10(A[i + k, i],A[i + k, 1 + i + j],<>s[i, j]);

_hh_12(s[i, j],_v4[i, j],_v5[i, j]);
doall (int k = 0; k <= - i + 1023; k++)

_hh_13(A[i + k, 1 + i + j],A[i + k, i],_v5[i, j]);
// epilogue elided

Here, the parallelization algorithm finds 
fine-grained parallelism

Result, after scheduling and tiling
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Various Downstream TransformationsVarious Downstream Transformations

• Tiling to match granularity of tasks to core (e.g., local memory size)
• Placing the tiles onto 1D and 2D arrays of cores
• Managing distributed local memories
• Generating explicit DMA and synchronization operations
• Multibuffering to overlap computation and communication
• Partitioning code for heterogeneous targets (hosts, accelerators)
• Unrolling and jamming for improved locality (enable SIMDization
• Converting to dataflow representation (for FPGA accelerators)
• Generating directives (e.g., OpenMP)

28HPEC 2008

R-Stream also automates all of these transformations

Parallelization is only the first step!
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Current Weaknesses and Future WorkCurrent Weaknesses and Future Work

• Array expansion is key to removing false dependencies
– Current implementation cannot fully remove all
– Better algorithms known and are in implementation
– E.g., demand-driven array expansion

• Capacity of ILP solvers
• Tuning, capability of downstream phases
• Making the LLC “sing” (e.g., SIMDization)

• More detailed comparisons with hand-mapped versions in the 
literature
– E.g., vs. known systolic forms for Givens, Gram-Schmidt

29HPEC 2008
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Conclusion and RemarksConclusion and Remarks

• Polyhedral form admits more complex algorithms than classic 
optimizers admit
– Including these three QR algorithms

• New scheduling algorithm has the ability to extract relevant complex 
schedules trading parallelism and locality

• Addresses new multicore and accelerator architectures
• Input programs expressed in plain C, without maps, etc.
• General representation and methods - a route for global optimization 

of even more complex codes
– e.g., an entire filter

• Targets different execution models (distributed, hetero, SMP, …)
• R-Stream provides implementation of the mapping sequence
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Enables tackling more advanced compiler research challenges

Presenter
Presentation Notes
What we’ve showed

The ability to generate a parallel program with complicated multiple degrees of parallelism and locality management from a sequential unannotated C source program.

The applicability of these techniques to the problem of QR decomposition
This happens vs. previous “classic” optimizations due to greater scope of the program representation model
Imperfect loop nests
Parametric extents and array access functions
Accessible from C

 Reported the existence of a technique that integrates optimization incorporating different kinds of parallelization optimization and locality management in a common framework.

Showed the kinds of parallelism that this technique identifies for 3 different algorithms for QR decomposition.

Described how this is relevant to new multicore processing architectures
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