### **Problem Statement**

ISR should do more "in the current conflicts while their outcomes may still be in doubt" – Sec. Gates

| More Timely,<br>More Accessible         | <ul> <li>Strategic Precision Targeting for use by a select<br/>few, to a Need for Tactical Precision Targeting for<br/>every warfighter</li> <li>Sensor data rates continue to outstrip available data<br/>link bandwidths, exacerbated by jamming</li> <li>Ground-based exploitation cells introduce too much<br/>latency for time-sensitive targeting</li> <li>Warfighters don't believe they will get appropriate<br/>sensing support when they need it</li> </ul> |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Persistent,<br>Accurate<br>Surveillance | <ul> <li>Multiple platforms are needed for persistence</li> <li>Single sensor platforms don't collect adequate target information</li> <li>Difficult targets in heavy clutter require interoperable platforms that can cooperatively find, classify and track targets (peer-to-peer)</li> </ul>                                                                                                                                                                       |
| Size, Weight, &<br>Power Efficient      | Proliferation of sensors on platforms is begetting ever more costly tradeoffs in SWaP                                                                                                                                                                                                                                                                                                                                                                                 |

© 2008 Mercury Computer Systems, Inc.



### **Converged Sensor Network Architecture (CSNA)**

A unique approach to sensor networking that brings together signal and image processing, information exploitation, and information management into a high-performance, most productive, and costeffective embedded compute platform



- Integrated, optimized for low latency, high throughput, and SWaP
- Designed to deliver an "embedded" Quality-of-Service that supports the convergence of processing and net-centric capabilities



# **Distributed Packet Processor for 10GE**

#### Implemented as a layered architecture that

- Bridges physical layer protocols
- Maps multiple logical layer protocols onto a bridge architecture
- PHY: automatic termination and throttling
- ROUTING: programmable field lookup, routing, and prioritization
  - Header translation and/or encapsulation
  - Traffic management
  - Software-based exception handling
- LOGICAL: end-to-end buffer management, timeouts for robust operation
  - Adjustable buffer watermarks per logical type (IP, ...)
  - Timeout and failover



# Ethernet-over-RapidIO (EoRIO) Wire Protocol

- Encapsulate Layer 2 Ethernet frames in a RapidIO transaction
  - Segmentation and reassembly as required
  - Buffer pools allocated in advance and managed using watermarks

#### Implemented across 3 different state machines

- Gateway Forwarding Engine
  - CRC check
  - MAC lookup to either valid endpoint or Gateway Exception Handler
  - Buffer Pool Manager for all mapped RapidIO endpoints
- Gateway Exception Handler
  - Multicast packets and topology changes for high availability
- EoRIO Endpoint Driver
  - Filters INGRESS packets to determine the type of transaction



## **EoRIO** Failover

- RapidIO subsystem optimized to cleanly handle DMA timeouts and stale transactions
- Applications and/or policy managers register for error handling
  - API to test connections
  - API to failover connections to backup RapidIO subsystem
- RSTP topology changes interact with Gateway Exception Handler and induce a Gateway failover

