Implementation of a Highly Parameterized Digital PIV System On Reconfigurable Hardware

Abderrahmane Bennis¹, Miriam Leeser¹, Gilead Tadmor¹, Russ Tedrake²

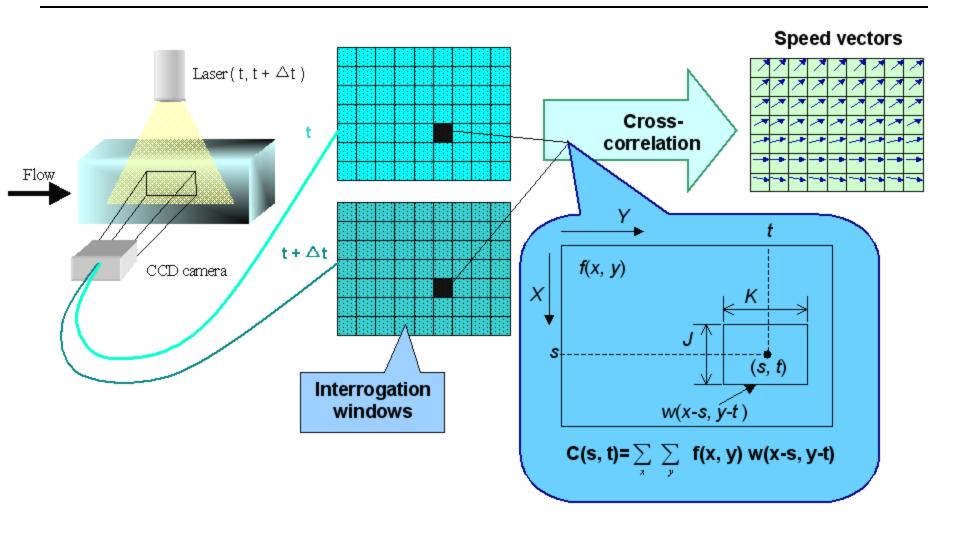
¹Northeastern University, ²Masachussetts Institute of Technology

PIV: Particle Image Velocimetry

Engineering applications:

Aerodynamics

lifting aircraft wing



Rotor aerodynamics

- Optimizing combustion systems, ...
- Used in scientific investigations:
 - Animal locomotion in fluids (swimming, flying)
 - Studying ocean waves, thermal convection, ...
- The algorithm:
 - Is computationally intensive
 - Exhibits of a high degree of parallelism
 - Requires different parameters for different uses

HPEC 2008

PIV Overview

Parameterized Implementation

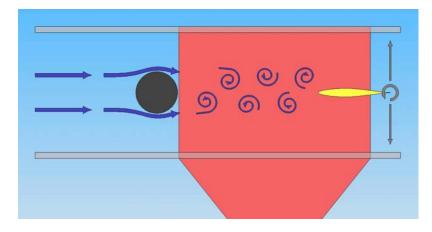
Parameterize hardware components:

Finite state machines, mulitpliers, accumulators, dividers

- Parameters:
 - Image size
 - PIV specifics: interrogation area, displacement
 - Board specifics: memory bandwidth ...

5	

Circuits	Image size	Hardware latency	Software Latency	Speedup
1	1024x1024	0.025	3.21	128
2	1200x1600	0.027	3.76	139
3	400x50	0.00473	0.109	23


HPEC 2008 MIT-NU

Implications and Applications

- PIV analysis has always been offline post-processing
- High frame rates (>30 Hz) and small latencies (<0.03s) are sufficient for real-time optical feedback control
 - Enables many novel experiments in flow control
 - Current laboratory experiment with MIT: an underwater vehicle which can "swim" efficiently through a complicated fluid environment by sensing the oncoming flow

Water table setup at MIT

