
Embedding Constraint Satisfaction using
Parallel Soft-Core Processors on FPGAs

Prasad Subramanian, Brandon Eames, Department of Electrical Engineering, Utah State University

Clusters Time to
propagate(ticks)

of distb.
steps

First
solution(ticks)

Cluster size Propagation
speed-up

Distb
speed-up

% of stack
usage

1 310209 60 FAILS 101 1 NA 167.98
2 159608 47 2632804 50/51 1.94 1.00 68.99
3 109971 43 1668505 34/34/33 2.82 1.58 44.41
4 85914 65 2360598 26/26/26/23 3.61 1.12 53.00

Abstract The architecture of a generic, flexible and scalable embedded
finite domain constraint solver targeting an FPGA is presented in this
work. We exploit the spatial parallelism offered by COTS FPGA
architectures via the instantiation of multiple soft-core processors, which
collectively implement the constraint solver. Soft-core processors
facilitate the development of flexible software based algorithms for
implementing individual constraints. The multi-core architecture
realized on the FPGA facilitates tight inter-core synchronization required
when solving constraints in parallel.

Introduction Constraint satisfaction and optimization techniques are
commonly employed in scheduling problems, industrial manufacturing
and automation processes, borrowing concepts from Operations
Research (OR) and Artificial Intelligence (AI). Constraint satisfaction
has also been applied in the design, synthesis and optimization of
embedded systems. By modeling the scheduling problem as a constraint
satisfaction problem (CSP), the embedded system becomes adaptable to
dynamic changes in the environment. In this work, we model the task
graph of dynamic occurrences for a space application in terms of
precedence constraints and use the multi-processor embedded CSP
solver.

Solver Architecture Propagation in a CSP with variables
belonging to domain of finite cardinality is amenable to parallel
processing. Instantiation of multiple soft-core MicroBlaze
processors from Xilinx with distributed memories exploited the
spatial parallelism provided by FPGA. The model in the above
figure implies the need for a globally shared memory,
simultaneously accessible by all propagation elements for sharing
variable information. Without such sharing, propagators cannot
cooperate to jointly make progress towards a solution.

The Consolidator

Emulation of shared memory via distributed
memories and communication links imposes issues of coherency. Local
copies of shared data are cached on each processor requiring. Data
coherency is maintained through two steps. First, when a finite domain
variable is updated by a remote processor, updates are sent to the owning
processor. Second, all updates are routed through a hardware unit called a
consolidator. The consolidator is a comparator that acts as a check point for
all updates to the constraint store, and only accepts updates which improve
or tighten the currently stored bounds for the variable. Since propagation
approaches a solution through bounds analysis of finite domain variables,
ordering between updates need not be maintained.

To evaluate our embedded FD constraint solver, we used a task graph from a previously published
hypothetical graph representing the events in an autonomous space mission planning algorithm. Our
constraint model consists of enforcing temporal precedence constraints in order to derive a schedule of
events in the graph. Measurements from the solver implementation executing on a VirtexII Pro Xilinx
FPGA are provided in the table. Results indicate that a performance speed-up in propagation increases as
the number of processors is increased. The solver failed to converge in the single-processor case, due to
lack of sufficient space in the local configuration stack.

Online constraint satisfaction potentially
opens the door to a variety of introspective
dynamic optimizations to embedded systems.
We have developed an approach for
embedding a finite domain constraint solver
on an FPGA, using a network of soft-core
processors, distributed memories and point-to-
point communication. The implementation of
the solver framework is generic enough to
allow different propagators embodying
various other constraints to be added in the
system.

Architecture

The implementation of a low-latency, globally shared
memory accessible by several computational devices is not practical on
an FPGA fabric, due to limitations on the number of read-write ports
of internal memories. Our implementation emulates shared memory by
making use of on-chip BlockRAM. The constraint store is partitioned
and distributed among the local memories associated with each soft
core processor.

Results Conclusion

	Embedding Constraint Satisfaction using Parallel Soft-Core Processors on FPGAs

