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1 310209 60 FAILS 101 1 NA 167.98
2 159608 47 2632804 50/51 1.94 1.00 68.99
3 109971 43 1668505 34/34/33 2.82 1.58 44.41
4 85914 65 2360598 26/26/26/23 3.61 1.12 53.00

Abstract The architecture of a generic, flexible and scalable embedded 
finite domain constraint solver targeting an FPGA is presented in this 
work. We exploit the spatial parallelism offered by COTS FPGA 
architectures via the instantiation of multiple soft-core processors, which 
collectively implement the constraint solver. Soft-core processors 
facilitate the development of flexible software based algorithms for 
implementing individual constraints.  The multi-core architecture 
realized on the FPGA facilitates tight inter-core synchronization required 
when solving constraints in parallel.

Introduction Constraint satisfaction and optimization techniques are 
commonly employed in scheduling problems, industrial manufacturing 
and automation processes, borrowing concepts from Operations 
Research (OR) and Artificial Intelligence (AI). Constraint satisfaction 
has also been applied in the design, synthesis and optimization of 
embedded systems. By modeling the scheduling problem as a constraint 
satisfaction problem (CSP), the embedded system becomes adaptable to 
dynamic changes in the environment. In this work, we model the task 
graph of dynamic occurrences for a space application in terms of 
precedence constraints and use the multi-processor embedded CSP 
solver.

Solver Architecture Propagation in a CSP with variables 
belonging to domain of finite cardinality is amenable to parallel 
processing. Instantiation of multiple soft-core MicroBlaze 
processors from Xilinx with distributed memories exploited the 
spatial parallelism provided by FPGA. The model in the above 
figure implies the need for a globally shared memory, 
simultaneously accessible by all propagation elements for sharing 
variable information. Without such sharing, propagators cannot 
cooperate to jointly make progress towards a solution.

The Consolidator

 

Emulation of shared memory via distributed 
memories and communication links imposes issues of coherency. Local 
copies of shared data are cached on each processor requiring. Data 
coherency is maintained through two steps. First, when a finite domain 
variable is updated by a remote processor, updates are sent to the owning 
processor. Second, all updates are routed through a hardware unit called a 
consolidator. The consolidator is a comparator that acts as a check point for 
all updates to the constraint store, and only accepts updates which improve 
or tighten the currently stored bounds for the variable. Since propagation 
approaches a solution through bounds analysis of finite domain variables, 
ordering between updates need not be maintained.

To evaluate our embedded FD constraint solver, we used a task graph from a previously published 
hypothetical graph representing the events in an autonomous space mission planning algorithm. Our 
constraint model consists of enforcing temporal precedence constraints in order to derive a schedule of 
events in the graph. Measurements from the solver implementation executing on a VirtexII Pro Xilinx 
FPGA are provided in the table. Results indicate that a performance speed-up in propagation increases as 
the number of processors is increased. The solver failed to converge in the single-processor case, due to 
lack of sufficient space in the local configuration stack.

Online constraint satisfaction potentially 
opens the door to a variety of introspective 
dynamic optimizations to embedded systems. 
We have developed an approach for 
embedding a finite domain constraint solver 
on an FPGA, using a network of soft-core 
processors, distributed memories and point-to- 
point communication. The implementation of 
the solver framework is generic enough to 
allow different propagators embodying 
various other constraints to be added in the 
system. 

Architecture

 

The implementation of a low-latency, globally shared 
memory accessible by several computational devices is not practical on 
an FPGA fabric, due to limitations on the number of read-write ports 
of internal memories. Our implementation emulates shared memory by 
making use of on-chip BlockRAM. The constraint store is partitioned 
and distributed among the local memories associated with each soft 
core processor.
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