
FPGAs for IEEE Floating Point
FPGA combine many of the features needed for high performance in
numerical applications:
• High parallelism – hundreds of multipliers
• Massive memory bandwidth – hundreds on on-chip RAMs
• Moderate power consumption – 50% of Xeon, 25% of nVidia

204,0002205100MLAB
74,880236864M9K

6,91227248M144
Bit/clkPortsWidthNumberMemory

Stratix ® EP3SE260 Memory Bandwidth

Technology GFlops Precision Power (W) GFlops/W
Altera 3SE260 82.0 Single 30 2.7
Xeon Quad 54XX 70.0 Single 70 1.0
nVidia C870 70.0 Single 150 0.5
Xeon Quad 54XX 43.1 Double 70 0.6
Altera 3SE360 44.2 Double 30 1.3

High non-chip memory bandwidth keeps
operands supplied.

New Altera compilation technology makes
more floating point capability available

B array: M9K
New column read from
 memories on every
 cycle: 16-128 DP
 values, (128-1K bytes).

Results

Σci
Fused data path
Final sum

Σaibi

Partial sum
 buffers

Floating Point performance:
 47.46 Gflops IEEE double precision,
 until throttled by system bus!

Fused data path
Dot product for part
 of matrix multiply

On-chip bandwidth keeps pipeline full

A array: M144K
Multi-cycle read of row.
Row is re-used for
 multiple columns

Sustained throughput
 Major memories double-buffered

No hard floating point cores
 Achievable with standard parts

Result compared to naïve block assembly:
 Gate count reductions to 40%
 Latency reductions to 40%

dp00 = ((xx00*cc00 + xx01*cc01) + (xx02*cc02 + xx03*cc03)) +
 ((xx04*cc04 + xx05*cc05) + (x06*cc06 + xx07*cc07));
dp01 = ((xx08*cc08 + xx09*cc09) + (xx0a*cc0a + xx0b*cc0b)) +
 ((xx0c*cc0c + xx0d*cc0d) + (xx0e*cc0e + xx0f*cc0f));
dp02 = ((xx10*cc10 + xx11*cc11) + (xx12*cc12 + xx13*cc13)) +
 ((xx14*cc14 + xx15*cc15) + (xx16*cc16 + xx17*cc17));
dp03 = ((xx18*cc18 + xx19*cc19) + (xx1a*cc1a + xx1b*cc1b)) +
 ((xx1c*cc1c + xx1d*cc1d) + (xx1e*cc1e + xx1f*cc1f));
result = ((dp00+ p01) + (dp02+dp03));

“Floating point data path synthesis for FPGAs,”, Martin Langhammer, Proc. FPL 2008

Typical floating point bloc:
• Prenormalize operands
• Calculate
• Renormalize result,
Redundant normalization wastes gates and cycles.

Fused data paths reduce gate count and latency

Instead, consider each operation in the context of adjacent
operations.
Guard bits eliminate need to post-normalize at every step.
Instead, worst-case analysis picks specific points for normalization.
Choose context-specific versions of each operator to minimize logic.

