FPGAs for IEEE Floating Point

FPGA combine many of the features needed for high performance in numerical applications:

· High parallelism – hundreds of multipliers

· Massive memory bandwidth – hundreds on on-chip RAMs

• Moderate power consumption – 50% of Xeon, 25% of nVidia

New Altera compilation technology makes more floating point canability available

Stratix ® EP3SE260 Memory Bandwidth

Memory	Number	Width	Ports	Bit/clk
M144	48	72	2	6,912
M9K	864	36	2	74,880
MLAB	5100	20	2	204,000

Technology	GFlops	Precision	Power (W)	GFlops/W
Altera 3SE260	82.0	Single	30	<mark>2.</mark> 7
Xeon Quad 54XX	70.0	Single	70	1.0
nVidia C870	70.0	Single	150	0.5
Xeon Quad 54XX	43.1	Double	70	0.6
Altera 3SE360	44.2	Double	30	1.3
	TechnologyAltera 3SE260Xeon Quad 54XXnVidia C870Xeon Quad 54XXAltera 3SE360	TechnologyGFlopsAltera 3SE26082.0Xeon Quad 54XX70.0nVidia C87070.0Xeon Quad 54XX43.1Altera 3SE36044.2	TechnologyGFlopsPrecisionAltera 3SE26082.0SingleXeon Quad 54XX70.0SinglenVidia C87070.0SingleXeon Quad 54XX43.1DoubleAltera 3SE36044.2Double	TechnologyGFlopsPrecisionPower (W)Altera 3SE26082.0Single30Xeon Quad 54XX70.0Single70nVidia C87070.0Single150Xeon Quad 54XX43.1Double70Altera 3SE36044.2Double30

Fused data paths reduce gate count and latency

- Typical floating point bloc:
- Prenormalize operands
- Calculate
- Renormalize result,

Redundant normalization wastes gates and cycles.

Instead, consider each operation in the context of adjacent operations.

Guard bits eliminate need to post-normalize at every step.

Instead, worst-case analysis picks specific points for normalization. Choose context-specific versions of each operator to minimize logic.

dp00 = ((xx00*cc00 + xx01*cc01) + (xx02*cc02 + xx03*cc03)) +((xx04*cc04 + xx05*cc05) + (x06*cc06 + xx07*cc07));dp01 = ((xx08*cc08 + xx09*cc09) + (xx0a*cc0a + xx0b*cc0b)) +((xx0c*cc0c + xx0d*cc0d) + (xx0e*cc0e + xx0f*cc0f)); dp02 = ((xx10*cc10 + xx11*cc11) + (xx12*cc12 + xx13*cc13)) +((xx14*cc14 + xx15*cc15) + (xx16*cc16 + xx17*cc17)); dp03 = ((xx18*cc18 + xx19*cc19) + (xx1a*cc1a + xx1b*cc1b)) +((xxlc*cclc + xxld*ccld) + (xxle*ccle + xxlf*cclf)); result = ((dp00+ p01) + (dp02+dp03));

> Result compared to naïve block assembly: Gate count reductions to 40% Latency reductions to 40%

"Floating point data path synthesis for FPGAs,", Martin Langhammer, Proc. FPL 2008

On-chip bandwidth keeps pipeline full

Results

Floating Point performance:

47.46 Gflops IEEE double precision, until throttled by system bus!

No hard floating point cores

Achievable with standard parts

Sustained throughput

Major memories double-buffered