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• Introduction
- Dependable Multiprocessor * technology 

- overview
- hardware architecture
- software architecture

• Current Status & Future Plans
• TRL6 Technology Validation
• Summary & Conclusion

Outline

*  formerly known as the Environmentally-Adaptive Fault-Tolerant Computer (EAFTC); 
The Dependable Multiprocessor effort is funded under NASA NMP ST8 contract 
NMO-710209.

This presentation has not been published elsewhere, and is hereby offered for exclusive publication 
except that Honeywell reserves the right to reproduce the material in whole or in part for its own use 
and where Honeywell is so obligated by contract, for whatever use is required thereunder.



3

DM Technology Advance: Overview
• A high-performance, COTS-based, fault tolerant cluster onboard processing 

system that can operate in a natural space radiation environment
high throughput, low power, scalable, & fully programmable >300 MOPS/watt  (>100)

high system availability > 0.995 (>0.95)

high system reliability for timely and correct delivery of data >0.995 (>0.95) 

technology independent system software that manages cluster of high performance 
COTS processing elements

technology independent system software that enhances radiation upset tolerance

Benefits to future users if DM experiment is successful:
- 10X – 100X more delivered computational throughput in space than currently available
- enables heretofore unrealizable levels of science data and autonomy processing
- faster, more efficient applications software development

-- robust, COTS-derived, fault tolerant cluster processing 
-- port applications directly from laboratory to space environment

--- MPI-based middleware
--- compatible with standard cluster processing application software including

existing parallel processing libraries
- minimizes non-recurring development time and cost for future missions
- highly efficient, flexible, and portable SW fault tolerant approach applicable to space and 

other harsh environments
- DM technology directly portable to future advances in hardware and software technology

NASA
Level 1

Requirements
(Minimum)
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• Desire - ->  ‘Fly high performance COTS multiprocessors 
in space’

Single Event Upset (SEU): Radiation induces transient faults in COTS 
hardware causing erratic performance and confusing COTS software

- robust control of cluster
- enhanced, SW-based, SEU-tolerance

Cooling:  Air flow is generally used to cool high performance COTS 
multiprocessors, but there is no air in space

- tapped the airborne-conductively-cooled market

Power Efficiency:  COTS only employs power efficiency for compact 
mobile computing, not for scalable multiprocessing 

- tapped the high performance density mobile market

- To satisfy the long-held desire to put the power of today’s PCs and
supercomputers in space, three key issues, SEUs, cooling, & power 
efficiency, need to be overcome 

DM Solution

DM Solution

DM Solution

Dependable Multiprocessor Technology

DM has addressed and solved all three issues 



5

DM Hardware Architecture
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DMM Top-Level Software Layers
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DMM Software Architecture “Stack”
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Examples: User-Selectable Fault Tolerance Modes

Fault  Tolerance Option Comments

NMR Spatial Replication Services Multi-node HW SCP and Multi-node HW TMR 

NMR Temporal Replication Services Multiple execution SW SCP and Multiple Execution 
SW TMR in same node with protected voting

ABFT Existing or user-defined algorithm; can either 
detector detect or detect and correct data errors 
with less overhead than NMR solution  

ABFT with partial Replication Services Optimal mix of ABFT to handle data errors and 
Replication Services for critical control flow 
functions

Check-pointing Roll Back User can specify one or more check-points within 
the application, including the ability to roll all the 
way back to the original

Roll forward As defined by user

Soft Node Reset DM system supports soft node reset

Hard Node Reset DM system supports hard node reset

Fast kernel OS reload Future DM system will support faster OS re-load for 
faster recovery  

Partial re-load of System Controller/Bridge Chip 
configuration and control registers

Faster recovery that complete re-load of all 
registers in the device

Complete System re-boot System can be designed with defined interaction 
with the S/C; TBD missing heartbeats will cause the 
S/C to cycle power  
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DM Technology Readiness & Experiment 
Development Status and Future Plans

TRL5
Technology 
Validation

TRL6
Technology 
Validation
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Technology 
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Critical
Design
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- CompleteKey:

5/17/06
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Launch 11/09 *
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• Per direction from NASA
Headquarters 8/3/07;
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X*
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DM TRL6 Testbed System
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DM TRL6 (Phase C/D) Flight Testbed

Custom Commercial Open
cPCI Chassis

Flight-like COTS DP nodes

Flight-like Mass Memory Module

Backplane Ethernet 
Extender Cards

System Controller
(flight RHSBC)
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Automated SWIFI (SW Implemented Fault Injection) Tests:

System
Controller

DP Board with 
NFTAPE kernel 

Injector and
NFTAPE interface

S/C 
Emulator

TRL6 Technology Validation Demonstration (1) 

KEY:
DP - COTS Data Processor
NFTAPE – Network Fault Tolerance And

Performance Evaluation tool

Host
NFTAPE

cPCI

TRL6 Test Bed

DP 
Boards

Ethernet Switch



13

System-Level Proton Beam Tests:
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Dependable Multiprocessor Experiment Payload 
on the ST8 “NMP Carrier” Spacecraft

ST8 Orbit:  - sun-synchronous
- 955 km x 460km @ 98.2o inclination

DM Payload
Power Supply

Module
MIB

RHPPC-SBC
System

Controller

Mass Memory
Module

4-xPedite 6031
DP nodes

Test, Telemetry, & 
Power Cables

Software
• Multi-layered System SW

- OS, DMM, APIs, FT algorithms
• SEU-Tolerance

- detection
- autonomous, transparent recovery

• Applications
- 2DFFT, LUD, Matrix Multiply, FFTW

SAR, HSI
• Multi-processing

- parallelism, redundancy
- combinable FT modes

Flight Hardware
• Dimensions

10.6 x 12.2 x 24.0 in.
(26.9 x 30.9 x 45.7 cm)

• Weight (Mass)
~ 61.05 lbs

(27.8 kg)
• Power

~ 121 W (max)

The ST8 DM Experiment Payload is a 
stand-alone, self-contained, bolt-on system.
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DM Markov Models
Data Flow Diagram for DM Markov Models
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DM Technology - Platform Independence
• DM technology has already been ported successfully to a number of platforms with 

heterogeneous HW and SW elements 
- Pegasus II with Freescale 7447a 1.0GHz processor with AltiVec vector processor with existing 

DM TRL5 Testbed 
- 35-Node Dual 2.4GHz Intel Xeon processors with 533MHz front-side bus and hyper-threading 

(Kappa Cluster) 
- 10-Node Dual Motorola G4 7455 @ 1.42 GHz, with AltiVec vector processor (Sigma Cluster) 

with FPGA acceleration 
- DM flight experiment 7447a COTS processing boards with DM TRL5 Testbed 
- DM TRL6 flight system testbed with 7447a COTS processing boards, with AliVec 

-- > 300 MOPS/watt for HSI application (> 287 MOPS/watt including System Controller power) 
- State-of-the-art PA Semiconductor dual core processor 

-- demonstrated high performance working under DM DMM umbrella 
-- > 1077 MOPS/watt for HSI application

DM TRL6 “Wind Tunnel” with 
COTS 7447a ST8 Flight Boards

DM TRL5 Testbed System
With COTS 750fx boards

35-Node Kappa Cluster at UF
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• Successfully ported four (4) real applications to DM testbeds
- HSI *

- eminently scalable MPI application
- ~ 14 hours to port application to DM system with DMM, hybrid ABFT, and in-line 

replication
- ~ 4 hours to implement  auto-correlation function in FPGA

- SAR *
- eminently scalable MPI application
- ~ 15 hours to port application to DM system with DMM, hybrid ABFT, in-line 

replication, check-pointing
- CRBLASTER (cosmic ray elimination application) **

- eminently scalable MPI application
- ~ 11 hours to port application to DM system with DMM, hybrid ABFT, and in-line replication
- scalability demonstrated ~ 1 minute per configuration

- QLWFP2C (cosmic ray elimination application) **
- fully-distributed MPI application
- ~ 4 hours port application to DM system with DMM
- scalability demonstrated ~ 1 minute per configuration

- NASA GSFC Synthetic Neural System (SNS) application for autonomous docking *
- ~ 51 hours to port application to DM system with DMM (includes time required to find a 

FORTRAN compiler to work with DM)
*  Port performed by Adam Jacobs, doctoral student at the University of Florida and member of ST8 DM team

**  Port performed by Dr. Ken Mighell, NOAO, Kitt Peak Observatory, independent 3rd party user/application 
developer with minimal knowledge of fault tolerance techniques, per TRL6 requirement

DM Technology - Ease of Use
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Summary & Conclusion 
• Flying high performance COTS in space is a long-held desire/goal

- Space Touchstone - (DARPA/NRL)
- Remote Exploration and Experimentation (REE)  - (NASA/JPL) 
- Improved Space Architecture Concept (ISAC) - (USAF)

• NMP ST8 DM project is bringing this desire/goal closer to reality
• DM TRL6 Technology Validation Demonstration 9/15 & 9/16/08

- system-level radiation tests validated DM operation in a radiation
environment

- demonstrated high performance, high Reliability, high Availability
and ease of use

• DM technology is applicable to wide range of missions
- science and autonomy missions
- landers/rovers
- CEV docking computer 
- MKV
- UAVs (Unattended Airborne Vehicles) 
- UUVs (Unattended or Un-tethered Undersea Vehicles)
- ORS (Operationally Responsive Space) 
- Stratolites
- ground-based systems & rad hard space applications
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