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Introduction1 
Discrete Wavelet Transform (DWT) is one of the most 
computationally expensive algorithmic kernels in 
JPEG2000 and also an important algorithm in other 
application areas [1]. The DWT algorithm has abundant 
parallelism to be exploited by multicore processors. Yet, 
this algorithm has distinct memory access patterns in 
horizontal and vertical filtering, and high bandwidth 
requirements, which become a performance bottleneck in 
optimization. 

The Sony-Toshiba-IBM Cell Broadband Engine (Cell/B.E.) 
is a heterogeneous multicore processor with the unique 
memory subsystem. The Cell/B.E.’s novel architecture 
raises an implementation challenge with potentially high 
pay-offs in performance. 

We provide the optimization techniques for the Cell/B.E. to 
fully utilize this unique and highly capable processor, and 
overcome the performance bottleneck. We also provide a 
performance comparison with the AMD Barcelona (Quad-
core Opteron) processor to highlight the advantage of the 
Cell/B.E.’s architecture over general purpose multicore 
processors in processing regular and bandwidth intensive 
applications. 

Cell Broadband Engine2 

 
Figure 1: The Cell Broadband Engine architecture 

The Cell/B.E. consists of two types of cores: one PPE and 
eight SPEs. The SPEs’ have unique and simple architecture 
distinguishes the Cell/B.E. from other multicore processors. 
The SPE is an in-order SIMD accelerator with local 
memory (Local Store) and does not support dynamic branch 
prediction or scalar instructions. This significantly reduces 
the transistor counts and power consumption of the core. 
Therefore, a single chip can include more cores within 
transistor or power budget. Moreover, the Cell/B.E. has 
highly scalable memory subsystem. The SPE has two 
mechanisms for data movements. Cache coherent DMA 
messages provide a mechanism for the data transfers among 
the main memory and the Local Stores. The load/store 
instructions move data from the SPE’s Local Store to its 
registers or from the registers to the Local Store. These 
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load/store instructions are local to the SPE and do not 
generate cache coherency messages. This reduces cache 
coherency traffic and enhances the scalability of the 
architecture with the increasing number of cores. Additional 
number of cores and the highly scalable architecture 
provide great potential for high performance. Especially, if 
an application has regular execution patterns that can be 
accurately predicted in compile time, additional cores can 
contribute to high aggregate computing power without 
noticeable sacrifice in a single core performance. A 
programmer or the compiler can provide branch hints 
instead of relying on dynamic branch prediction, and the 
compiler can reschedule the instructions to compensate the 
lack of dynamic out-of-order execution support. We can 
expect an additional performance boost, if an application 
code can be efficiently vectorized using SIMD instructions. 
Explicit data transfer requires additional programming but 
at the same time, provides an opportunity for the fine grain 
optimization specific to the application requirements. 

Optimization Approaches 
The DWT algorithm has two distinctive memory access 
patterns. The algorithm scans a 2-D image array in row 
major order for the horizontal filtering, and column major 
order for the vertical filtering. For C implementation, bad 
cache behavior in column major traversal decreases the 
performance significantly, and column grouping technique 
[2], which groups and interleaves multiple column major 
traversals to enhance the cache behavior, is adopted to 
resolve this problem. We designed data decomposition 
scheme for the Cell/B.E., and this scheme can be combined 
with the column grouping approach for the efficient data 
transfer between main memory and the Local Store. 

 
Figure 2: Data decomposition scheme for 2-D array 

Figure 2 displays the data decomposition scheme for the 
two dimensional array with an arbitrary width and height, 
assuming that every row can be arbitrarily partitioned to 
multiple chunks for independent processing. The efficient 



data transfer and vectorization on the Cell/B.E. require 
proper data alignment, and our data decomposition scheme 
addresses these alignment issues for the two dimensional 
array with the above assumptions. Row padding forces the 
start address of every row to be cache line aligned and the 
length of every row to be a multiple of the cache line size. 
Data array is partitioned to the multiple chunks with a 
constant width (a multiple of the cache line size) and the 
remainder chunk with an arbitrary width. The SPEs process 
the constant width data chunks and the PPE processes the 
remainder chunk. A single row in the data chunk becomes a 
unit of data transfer and processing for the SPEs. 

This data decomposition scheme has the following impacts 
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in the performance and the programmability. First, every 
DMA transfer in the SPE becomes cache line aligned and 
the transfer size becomes a multiple of the cache line size. 
Therefore, we can expect the highly efficient DMA transfer 
and the reduced programming complexity. With the 
unaligned data or the arbitrary data transfer size, we need 
an additional programming to satisfy the conditions for the 
correct and efficient data transfer. Similar analysis applies 
to the vectorization. Second, we can easily adopt the 
optimization techniques which require additional Local 
Store space. As mentioned above, a single row in the 
chunk, which has the constant width, becomes a unit of data 
transfer and computation in the SPE. Thus, the Local Store 
space requirement becomes constant independent of the 
data array size, and we can exactly estimate the memory 
requirements in static time. In addition, fixed data size leads 
to a constant loop count, and if a loop count is constant, the 
compiler can better predict the runtime behavior. This 
facilitates the compiler optimization techniques such as 
loop unrolling, instruction rescheduling, and compile time 
branch prediction. 

We optimized the D
JPEG2000 library implementation, and the following 
summarizes our optimization approaches based on the data 
decomposition scheme. 

• Parallelization and 

• Real number representation – Re
real number representation (assign fixed number of bits 
for fractional part, and the remaining bits for the 
integer part) with floating point representation to 
exploit the Cell/B.E.’s superb single precision floating 
point performance. 

• Loop interleaving –
lifting steps and a splitting step in the algorithm to 
reduce the bandwidth requirements. 

• Multi-level buffering 

• Fine grain data tran
transfer on the Cell/B.E. enables fine grain data 
transfer control to overlap data transfer with 
computation in addition to multi-level buffering. 

Performance Evaluation 
We compare the Cell/B.E.
performance with the AMD Barcelona 2.0 GHz (Quad-Core 
Opteron Processor 8350). We optimize the code for 

Barcelona using PGI C compiler, a parallel compiler for 
multicore optimization, and user provided compiler 
directives. Table 1 summarizes the optimization for the 
Barcelona. 
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Figure 3: Experimental Results. The numbers above the bars 

denote the speedup relative to the Cell/B.E. (Base). 
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Figure 3 shows that the baseline implementation for the 
.E. (running on the PPE only) has lower perform

but this processor’s unique architecture, combined with the 
judicious optimization approaches, has a great potential for 
exceptional performance to pay-off its higher programming 
complexity. 
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