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Abstract  
With the end of increasing frequencies, new processor 
solutions are emerging for increased performance.  
Multicore is one of the leading choices.  The Fast Fourier 
Transform (FFT) historically has been a challenge to 
optimize on most architectures. The complexity of 
multicore programming only increases that challenge.  Here 
the STI Cell Broadband Engine (Cell) is used as an example 
multicore processor for implementing a 1M point FFT.   

Approaching the FFT 
Understanding the capabilities of the processor is the first 
step in designing a highly optimized FFT1.  Small FFTs 
fitting with the local store memory (LS) of a single SPE 
require understanding of the SPE architecture.  Mid-sized 
FFT that fit on multiple LS additionally require a good 
grasp of the Element Interconnect Bus (EIB).  In the case 
considered here the 32-bit floating point input data (8 MB) 
exceeds the entire LS of all the SPEs, so XDR memory 
must be used.  Knowing the advantages and limitations of 
the entire Cell is crucial to this FFT design. 

Fig. 1 Cell Block Diagram 

Traditional Large FFT 
When a 1D FFT’s memory requirement exceeds of the 
smallest usable unit in a system such as data cache or the 
size is sufficiently large to make a multiple processor 
solution viable, the 1D FFT is usually cast as a 2D FFT.  
The FFT data is logically divided into equal segments that 
are regarded as rows. 

The usual method performs a corner turn to compact the 
columns, performs FFTs over the columns, performs 
another corner turn to return the modified data to the 
original order, multiplies the data elementwise by a matrix 
of weight factors (central twiddles), performs FFTs over the 
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1 The reader’s familiarity with Cell architecture is assumed. 

rows, and performs a final corner turn to order the data.  
Fig. 2 illustrates this method graphically. 
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Fig. 2 Computing a 1D FFT as a 2D FFT 

This method has very good data locality.  Typically the FFT 
data can fit nicely into the local cache, or blocks of rows 
can be efficiently distributed among the processors. 

Another advantage is it allows code to be reused.  Only a 
single FFT is required.  If the FFT is configured as a square 
matrix, the same weight table is used for all of the FFTs.  
All of this helps to minimize memory requirements as well 
as reduce I/O overhead. 

There is a major disadvantage to this method.  Processor 
speeds are much faster than communication speed.  The 
timing of the 1D as 2D solution is dominated by I/O. 

Minimizing Data Transfers 
Recognizing the largest consumers of time for an algorithm 
is the first step in optimization.  For large FFTs minimizing 
the communication is the priority.  The corner turns shown 
in Fig. 2 have little opportunity to overlap with 
computation.  The first two accommodate the use of a 
single FFT throughout the algorithm.  Rethinking this 
section of code is key to optimization. 

Small FFTs can display the ideas of a design that can then 
be scaled to larger sizes.  Fig. 3 shows the signal flow 
diagram for a size 16 FFT.  This figure uses two processors, 
red and black.  The data is divided between the two 
processors such that no exchange of data is needed until the 
middle of the FFT processing.  At that point the data is 
exchanged between the two processors to form new blocks 
and the computation resumes to completion.  Note that for 
the reorganization the amount of data that needs to be 
exchanged is less than the total data since each processor 
gets to retain half its data.  For larger FFTs with N 
processors each processor can retain 1/N of its original data.   



This organization is the central idea behind 1D to 2D, but 
here we want to apply it to the column FFTs.  Since these 
FFTs are relatively small and thus have small twiddle 
tables, there isn’t a good reason to use the central twiddle 
step since resuming the FFT is as effective. 

 
Fig. 3 Signal Flow Graph for Size 16 FFT 

Computing a single column at a time would yield very poor 
performance since the DMA engines are not designed for 
transfers less than 128 bytes.  A better choice is to transfer a 
block of column data to the SPEs.   

Fig. 4 shows an initially distributed band.  The band can be 
viewed as having 32 blocks of 32 rows.  Each block is 
distributed on 4 SPEs.  The rows on a single processor are 
assumed to be contiguous from block to block.  Since SPE 
registers are SIMD, 4 column FFTs are computed together. 

            Conclusions 
Fig. 4 Band of Column FFTs Using 4 SPEs 

Once the initial distribution has been exhausted, the data 
can be redistributed via the EIB bus with its higher 
bandwidth.  The final distribution consists of blocks of 
contiguous rows as in Fig. 3.  Note that this does not 
support bit reversal.  The access order of the row FFTs in 
the second half will provide efficient bit reversal. 

Once the column bands have been completed, the central 
twiddles are applied and FFTs are applied to the rows to 
complete the computation.  The row FFTs can be the 
conventional FFTs such as those provided by vendors.  The 
final step is a corner turn that can be omitted for 
convolutions. 

The advantages to this algorithm is that the lower 
bandwidth XDR memory accesses (25.3 GB/s read or 
write) have been reduced from 6 to 2 for the columns.  The 
cost has been additional code and possibly a small twiddle 
table. 

Accuracy and Choice of Algorithm  

The Cell designers chose to limit the rounding mode for 32-
bit floating point calculations to truncation.  The 
consequence is that there is a bias in these computations.  
Maintaining accuracy is always challenge for a 1M point 
FFT, but on Cell it is particularly so. 

reorganize 

Since manually correcting for truncation errors is 
prohibitive, the best solution is to minimize the number of 
operations in the algorithm.  The two common methods of 
computing, Cooley-Tukey and Gentleman-Sande, will 
differ in accuracy.  Gentleman-Sande will produce some 
results that are better than Cooley-Tukey, but some output 
data may have up to 50% more round off error.  Cooley-
Tukey should give more even error. 

With I/O dominating the timings it is tempting to 
implement a radix 2 algorithm since it has a smaller twiddle 
table and is easier to implement.  Higher radices should 
produce less round off error since they are more efficient.  
A radix 4 implementation should produce 15% less error 
than a radix 2 based on the number of computations. 

Estimating Performance 
Estimating performance for an FFT requires balancing the 
computation and the I/O requirements.  The starting point is 
based on the number of floating point operations in a radix 
2 FFT, 5 N log2 N.  For a 1M point FFT, this gives roughly 
105 x 106 operations.  At an optimistic 90% of the peak 205 
GFLOPS performance on 8 SPEs we would expect the 
timing near 0.6 ms compute time.   

With 25.3 GB/sec maximum transfer rate, the I/O time 
dominates.  A more realistic 20 GB/sec with a minimum of 
two complete read and write of the full data set gives 1.7 
ms for the I/O.  Given more than a factor of two between 
the compute and I/0 times, this FFT can be computed on 4 
SPEs leaving the other 4 as data caches to handle XDR data 
transfers.  The timing should be near 2 ms if handled 
correctly. 

Achieving high performance for FFT is always difficult.  
The introduction of multicore processors such as the Cell 
has only increased this difficulty.  Older algorithms, while 
producing slow results, can be the basis for new ideas.  In 
this described version, a 1M FFT should take about 2 ms to 
execute.  This FFT will be built and run to compare with 
the prediction.  This should be completed by the end of 
summer 2008. 
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