
Large Multicore FFTs: Approaches to Optimization
Sharon M. Sacco

MIT Lincoln Laboratory, Lexington MA 02420
ssacco@ll.mit.edu

Abstract
With the end of increasing frequencies, new processor
solutions are emerging for increased performance.
Multicore is one of the leading choices. The Fast Fourier
Transform (FFT) historically has been a challenge to
optimize on most architectures. The complexity of
multicore programming only increases that challenge. Here
the STI Cell Broadband Engine (Cell) is used as an example
multicore processor for implementing a 1M point FFT.

Approaching the FFT
Understanding the capabilities of the processor is the first
step in designing a highly optimized FFT1. Small FFTs
fitting with the local store memory (LS) of a single SPE
require understanding of the SPE architecture. Mid-sized
FFT that fit on multiple LS additionally require a good
grasp of the Element Interconnect Bus (EIB). In the case
considered here the 32-bit floating point input data (8 MB)
exceeds the entire LS of all the SPEs, so XDR memory
must be used. Knowing the advantages and limitations of
the entire Cell is crucial to this FFT design.

Fig. 1 Cell Block Diagram

Traditional Large FFT
When a 1D FFT’s memory requirement exceeds of the
smallest usable unit in a system such as data cache or the
size is sufficiently large to make a multiple processor
solution viable, the 1D FFT is usually cast as a 2D FFT.
The FFT data is logically divided into equal segments that
are regarded as rows.

The usual method performs a corner turn to compact the
columns, performs FFTs over the columns, performs
another corner turn to return the modified data to the
original order, multiplies the data elementwise by a matrix
of weight factors (central twiddles), performs FFTs over the

 This work is sponsored by the Department of the Air Force under Air
Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and not necessarily endorse
by the United States Government.

1 The reader’s familiarity with Cell architecture is assumed.

rows, and performs a final corner turn to order the data.
Fig. 2 illustrates this method graphically.

Corner Turn Corner Turn

Corner Turn

Multiply by
Central Twiddles

FFT on columns

FFT on Rows
FFT

Complete
1D order

Input data
as matrix in
row major

Input data as
matrix in

column major

Central
twiddle

table

Intermediate
FFT results
row major

Fig. 2 Computing a 1D FFT as a 2D FFT

This method has very good data locality. Typically the FFT
data can fit nicely into the local cache, or blocks of rows
can be efficiently distributed among the processors.

Another advantage is it allows code to be reused. Only a
single FFT is required. If the FFT is configured as a square
matrix, the same weight table is used for all of the FFTs.
All of this helps to minimize memory requirements as well
as reduce I/O overhead.

There is a major disadvantage to this method. Processor
speeds are much faster than communication speed. The
timing of the 1D as 2D solution is dominated by I/O.

Minimizing Data Transfers
Recognizing the largest consumers of time for an algorithm
is the first step in optimization. For large FFTs minimizing
the communication is the priority. The corner turns shown
in Fig. 2 have little opportunity to overlap with
computation. The first two accommodate the use of a
single FFT throughout the algorithm. Rethinking this
section of code is key to optimization.

Small FFTs can display the ideas of a design that can then
be scaled to larger sizes. Fig. 3 shows the signal flow
diagram for a size 16 FFT. This figure uses two processors,
red and black. The data is divided between the two
processors such that no exchange of data is needed until the
middle of the FFT processing. At that point the data is
exchanged between the two processors to form new blocks
and the computation resumes to completion. Note that for
the reorganization the amount of data that needs to be
exchanged is less than the total data since each processor
gets to retain half its data. For larger FFTs with N
processors each processor can retain 1/N of its original data.

This organization is the central idea behind 1D to 2D, but
here we want to apply it to the column FFTs. Since these
FFTs are relatively small and thus have small twiddle
tables, there isn’t a good reason to use the central twiddle
step since resuming the FFT is as effective.

Fig. 3 Signal Flow Graph for Size 16 FFT

Computing a single column at a time would yield very poor
performance since the DMA engines are not designed for
transfers less than 128 bytes. A better choice is to transfer a
block of column data to the SPEs.

Fig. 4 shows an initially distributed band. The band can be
viewed as having 32 blocks of 32 rows. Each block is
distributed on 4 SPEs. The rows on a single processor are
assumed to be contiguous from block to block. Since SPE
registers are SIMD, 4 column FFTs are computed together.

 Conclusions
Fig. 4 Band of Column FFTs Using 4 SPEs

Once the initial distribution has been exhausted, the data
can be redistributed via the EIB bus with its higher
bandwidth. The final distribution consists of blocks of
contiguous rows as in Fig. 3. Note that this does not
support bit reversal. The access order of the row FFTs in
the second half will provide efficient bit reversal.

Once the column bands have been completed, the central
twiddles are applied and FFTs are applied to the rows to
complete the computation. The row FFTs can be the
conventional FFTs such as those provided by vendors. The
final step is a corner turn that can be omitted for
convolutions.

The advantages to this algorithm is that the lower
bandwidth XDR memory accesses (25.3 GB/s read or
write) have been reduced from 6 to 2 for the columns. The
cost has been additional code and possibly a small twiddle
table.

Accuracy and Choice of Algorithm

The Cell designers chose to limit the rounding mode for 32-
bit floating point calculations to truncation. The
consequence is that there is a bias in these computations.
Maintaining accuracy is always challenge for a 1M point
FFT, but on Cell it is particularly so.

reorganize

Since manually correcting for truncation errors is
prohibitive, the best solution is to minimize the number of
operations in the algorithm. The two common methods of
computing, Cooley-Tukey and Gentleman-Sande, will
differ in accuracy. Gentleman-Sande will produce some
results that are better than Cooley-Tukey, but some output
data may have up to 50% more round off error. Cooley-
Tukey should give more even error.

With I/O dominating the timings it is tempting to
implement a radix 2 algorithm since it has a smaller twiddle
table and is easier to implement. Higher radices should
produce less round off error since they are more efficient.
A radix 4 implementation should produce 15% less error
than a radix 2 based on the number of computations.

Estimating Performance
Estimating performance for an FFT requires balancing the
computation and the I/O requirements. The starting point is
based on the number of floating point operations in a radix
2 FFT, 5 N log2 N. For a 1M point FFT, this gives roughly
105 x 106 operations. At an optimistic 90% of the peak 205
GFLOPS performance on 8 SPEs we would expect the
timing near 0.6 ms compute time.

With 25.3 GB/sec maximum transfer rate, the I/O time
dominates. A more realistic 20 GB/sec with a minimum of
two complete read and write of the full data set gives 1.7
ms for the I/O. Given more than a factor of two between
the compute and I/0 times, this FFT can be computed on 4
SPEs leaving the other 4 as data caches to handle XDR data
transfers. The timing should be near 2 ms if handled
correctly.

Achieving high performance for FFT is always difficult.
The introduction of multicore processors such as the Cell
has only increased this difficulty. Older algorithms, while
producing slow results, can be the basis for new ideas. In
this described version, a 1M FFT should take about 2 ms to
execute. This FFT will be built and run to compare with
the prediction. This should be completed by the end of
summer 2008.

References
[1] E. Oran Brigham, The Fast Fourier Transform and Its Application,

Prentice Hall, 1988.

[2] C. Van Loan, Computational Frameworks for the Fast Fourier
Transform, SIAM, 1992.

[3] A. Arevalo et al., Programming the Cell Broadband Engine, IBM,
2007. (ibm.com/redbooks)

1024

1024

32

32

4

8

