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Introduction
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Recent generations of FPGAs, together with innovation in 

synthesis of floating point data paths, open new possibilities 

in performance computing. For example, Altera’s Stratix ® 

3SE260 can sustain 50GFLOPs of 64-bit double-precision 

(DP) IEEE 764 floating point computation. This report 

describes a matrix multiplication core that approaches that 

performance, limited by the data rate of the Hypertransport 

3.0 channel that delivers results to the host’s main memory. 

The arithmetic core of this application was built using an 

experimental floating point core builder. Typical FPGA 

floating point applications use separate, fixed blocks for 

each arithmetic operator, irrespective of the expression in 

which each operator appears. This core generator is 

different. It starts with entire expressions and sets of 

expressions written in ANSI C, and creates a fused, fully 

pipelined floating point data path specific to that 

application. This lets the core builder examine the context 

in which each operator appears and generate operator logic 

specific to that expression context. The result typically 

reduces latency (in clock cycles) and logic utilization by up 

to 50%, compared to naïve assembly of operator blocks, 

while keeping clock rates of 200 MHz or more. The 

reduction in logic translates directly into a reduction in 

power for a given computation, or an opportunity for more 

functions to be implemented in a given amount of FPGA 

fabric. 

DGEMM Implementation
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This implementation can be tailored at compile time to 

handle matrices of arbitrary size, as long as both of the 

input matrices can fit into on-chip RAM. The matrix 

multiplication A�B is subdivided into vector dot products 

with scalar results. A rows and B columns are subdivided 

into vectors, and elements of the result matrix are sums of a 

set of dot products.  In order to compute partial sums, one 

row vector of the A matrix is held steady while successive 

column vectors of the B matrix are fetched. The partial sum 

is the dot product of A’s row and B’s column. Dot product 

logic, described below, takes a new vector-pair at every 

cycle and, after pipeline latency, delivers one scalar per 

cycle. The dot product length can be configured, and the 

current library supports vector lengths of 32, 64, 96, and 

128 DP values. Other lengths could be added, but were not 

needed for the proof-of-principle implementation. 

                                                 
  

  

Matrix sizes are not limited by the size of the dot product 

length. The implementation uses blocking to support any 

matrix sizes that are multiples of the dot product length. 

The A matrix is decomposed into a large number of 

matrixes, where each row contains multiple matrixes, each 

one row by dot product length columns. The B matrix is 

composed of a smaller number of matrixes, each dot 

product length rows by the number of columns in B. Block 

results are stored in a local cache, which are summed once 

the first element of the last block of the current group of 

blocks has been written to the cache.   

Input matrices are interleaved across multiple on-chip RAM 

banks, allowing concurrent access to multiple elements of 

each array. Column vectors of the B matrix are interleaved 

across the 3SE260’s on-chip M9K RAM banks so that 

every element of the row vector is fetched in a single cycle, 

up to 128 DP values (2K bytes) in the current 

implementation. Sequencing logic presents one entire 

column vector from the A matrix to the dot product core on 

every cycle. At the same time, the next row vector from the 

A matrix is readied using multi-cycle access to the M144 

on-chip RAMs, overlapped with the multi-cycle 

computation of a row of the output matrix. Figure 1 

illustrates organization of the A and B memories with 

respect to the dot product core. There are 844 independently 

addressable M9K RAM blocks on the 3SE260, each with 
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9K (9216) bits total, configurable in word widths to 36 bits. 

The 3SE260 also contains 48 independently addressable 

M144 RAMs, each with 144K (147,456) total bits and word 

widths up to 72 bits. 

The sequencing logic buffers result values to be sent from 

the accelerator to the host’s main memory. This overlaps 

computation as much as possible, but can stall the floating 

point pipeline when output buffers fill. 

The dot product core 
Figure 2 shows the ANSI C code for the dot product 

(except for normal declarations), using the length-32 core 

as an example. This core is fully pipelined, so it accepts a 

new vector-pair (two length-32 vectors, or 64 DP values for 

this example) per cycle. After pipeline latency, the core 

delivers one scalar DP result per cycle.  

 

dp00 = ((xx00*cc00 + xx01*cc01)  +  

        (xx02*cc02 + xx03*cc03)) +  

       ((xx04*cc04 + xx05*cc05)  +  

         (xx06*cc06 + xx07*cc07));  

dp01 = ((xx08*cc08 + xx09*cc09)  + 

        (xx0a*cc0a + xx0b*cc0b)) +  

       ((xx0c*cc0c + xx0d*cc0d)  + 

        (xx0e*cc0e + xx0f*cc0f));  

dp02 = ((xx10*cc10 + xx11*cc11)  + 

        (xx12*cc12 + xx13*cc13)) +  

  ((xx14*cc14 + xx15*cc15)  + 

         (xx16*cc16 + xx17*cc17)); 

dp03 = ((xx18*cc18 + xx19*cc19)  + 

        (xx1a*cc1a + xx1b*cc1b)) +  

  ((xx1c*cc1c + xx1d*cc1d)  + 

         (xx1e*cc1e + xx1f*cc1f));  

result = ((dp00+ p01) + (dp02+dp03)); 

Figure 2. Length-32 dot product,  

input to floating point block builder 

This ANSI C code, plus some wrapper declarations also 

coded in ANSI C, is input to the experimental floating point 

core builder. The core builder honors parentheses for 

enforcing order of evaluation. As a result, this code 

evaluates one dot product by performing 32 multiplications 

in parallel, then feeding the 32 products to tree adder. 

Because summation uses a tree adder, total latency of the 

pipeline grows only as the log of the vector length. Table 1 

shows latencies for the library’s current dot product cores.  

Conclusions 
This case study examines FPGA-based acceleration of 

matrix multiplication, using double precision IEEE floating 

point arithmetic. It uses an experimental tool for building 

the floating point core of the computation, and can achieve 

DP computation rates up to 47.46 GFLOPs, until throttled 

by HyperTransport’s rate of sending results to host 

memory, a theoretical maximum of 20.8 Gbyte/sec. 

FPGAs have traditionally been considered “bad” at IEEE 

floating point arithmetic. We hope that myth can be laid to 

rest. At the same time, the FPGA’s massive on-chip 

memory bandwidth and native parallelism allow fast 

execution of operations that require up to hundreds of 

operands at a time. We look forward to other applications 

of the floating point core builder, and to even higher 

performance on the new Stratix IV generation of FPGAs. 

Table 1. Dot product latency vs. vector length 

Vector length Latency (cycles) 

32 41 

64 46 

96 51 

128 55 

 


