
Accelerating Floating Point DGEMM on FPGAs.
Martin Langhammer, Tom VanCourt.

Altera Corporation

mlangham@altera.com

tvancour@altera.com

Introduction
1

Recent generations of FPGAs, together with innovation in

synthesis of floating point data paths, open new possibilities

in performance computing. For example, Altera’s Stratix ®

3SE260 can sustain 50GFLOPs of 64-bit double-precision

(DP) IEEE 764 floating point computation. This report

describes a matrix multiplication core that approaches that

performance, limited by the data rate of the Hypertransport

3.0 channel that delivers results to the host’s main memory.

The arithmetic core of this application was built using an

experimental floating point core builder. Typical FPGA

floating point applications use separate, fixed blocks for

each arithmetic operator, irrespective of the expression in

which each operator appears. This core generator is

different. It starts with entire expressions and sets of

expressions written in ANSI C, and creates a fused, fully

pipelined floating point data path specific to that

application. This lets the core builder examine the context

in which each operator appears and generate operator logic

specific to that expression context. The result typically

reduces latency (in clock cycles) and logic utilization by up

to 50%, compared to naïve assembly of operator blocks,

while keeping clock rates of 200 MHz or more. The

reduction in logic translates directly into a reduction in

power for a given computation, or an opportunity for more

functions to be implemented in a given amount of FPGA

fabric.

DGEMM Implementation
2

This implementation can be tailored at compile time to

handle matrices of arbitrary size, as long as both of the

input matrices can fit into on-chip RAM. The matrix

multiplication A�B is subdivided into vector dot products

with scalar results. A rows and B columns are subdivided

into vectors, and elements of the result matrix are sums of a

set of dot products. In order to compute partial sums, one

row vector of the A matrix is held steady while successive

column vectors of the B matrix are fetched. The partial sum

is the dot product of A’s row and B’s column. Dot product

logic, described below, takes a new vector-pair at every

cycle and, after pipeline latency, delivers one scalar per

cycle. The dot product length can be configured, and the

current library supports vector lengths of 32, 64, 96, and

128 DP values. Other lengths could be added, but were not

needed for the proof-of-principle implementation.

Matrix sizes are not limited by the size of the dot product

length. The implementation uses blocking to support any

matrix sizes that are multiples of the dot product length.

The A matrix is decomposed into a large number of

matrixes, where each row contains multiple matrixes, each

one row by dot product length columns. The B matrix is

composed of a smaller number of matrixes, each dot

product length rows by the number of columns in B. Block

results are stored in a local cache, which are summed once

the first element of the last block of the current group of

blocks has been written to the cache.

Input matrices are interleaved across multiple on-chip RAM

banks, allowing concurrent access to multiple elements of

each array. Column vectors of the B matrix are interleaved

across the 3SE260’s on-chip M9K RAM banks so that

every element of the row vector is fetched in a single cycle,

up to 128 DP values (2K bytes) in the current

implementation. Sequencing logic presents one entire

column vector from the A matrix to the dot product core on

every cycle. At the same time, the next row vector from the

A matrix is readied using multi-cycle access to the M144

on-chip RAMs, overlapped with the multi-cycle

computation of a row of the output matrix. Figure 1

illustrates organization of the A and B memories with

respect to the dot product core. There are 844 independently

addressable M9K RAM blocks on the 3SE260, each with

A matrix

M144 BRAM

B matrix

M9K BRAM

∑
N

i

ii
ba

Partial sum

buffers

A row buffer

 ∑∑∑∑ci

Final sum

Fused data

path

Dot product,

Fused data

 path

To output

buffer

Figure 1.

Dot product

computation:

matrix storage

and data path

9K (9216) bits total, configurable in word widths to 36 bits.

The 3SE260 also contains 48 independently addressable

M144 RAMs, each with 144K (147,456) total bits and word

widths up to 72 bits.

The sequencing logic buffers result values to be sent from

the accelerator to the host’s main memory. This overlaps

computation as much as possible, but can stall the floating

point pipeline when output buffers fill.

The dot product core
Figure 2 shows the ANSI C code for the dot product

(except for normal declarations), using the length-32 core

as an example. This core is fully pipelined, so it accepts a

new vector-pair (two length-32 vectors, or 64 DP values for

this example) per cycle. After pipeline latency, the core

delivers one scalar DP result per cycle.

dp00 = ((xx00*cc00 + xx01*cc01) +

 (xx02*cc02 + xx03*cc03)) +

 ((xx04*cc04 + xx05*cc05) +

 (xx06*cc06 + xx07*cc07));

dp01 = ((xx08*cc08 + xx09*cc09) +

 (xx0a*cc0a + xx0b*cc0b)) +

 ((xx0c*cc0c + xx0d*cc0d) +

 (xx0e*cc0e + xx0f*cc0f));

dp02 = ((xx10*cc10 + xx11*cc11) +

 (xx12*cc12 + xx13*cc13)) +

 ((xx14*cc14 + xx15*cc15) +

 (xx16*cc16 + xx17*cc17));

dp03 = ((xx18*cc18 + xx19*cc19) +

 (xx1a*cc1a + xx1b*cc1b)) +

 ((xx1c*cc1c + xx1d*cc1d) +

 (xx1e*cc1e + xx1f*cc1f));

result = ((dp00+ p01) + (dp02+dp03));

Figure 2. Length-32 dot product,

input to floating point block builder

This ANSI C code, plus some wrapper declarations also

coded in ANSI C, is input to the experimental floating point

core builder. The core builder honors parentheses for

enforcing order of evaluation. As a result, this code

evaluates one dot product by performing 32 multiplications

in parallel, then feeding the 32 products to tree adder.

Because summation uses a tree adder, total latency of the

pipeline grows only as the log of the vector length. Table 1

shows latencies for the library’s current dot product cores.

Conclusions
This case study examines FPGA-based acceleration of

matrix multiplication, using double precision IEEE floating

point arithmetic. It uses an experimental tool for building

the floating point core of the computation, and can achieve

DP computation rates up to 47.46 GFLOPs, until throttled

by HyperTransport’s rate of sending results to host

memory, a theoretical maximum of 20.8 Gbyte/sec.

FPGAs have traditionally been considered “bad” at IEEE

floating point arithmetic. We hope that myth can be laid to

rest. At the same time, the FPGA’s massive on-chip

memory bandwidth and native parallelism allow fast

execution of operations that require up to hundreds of

operands at a time. We look forward to other applications

of the floating point core builder, and to even higher

performance on the new Stratix IV generation of FPGAs.

Table 1. Dot product latency vs. vector length

Vector length Latency (cycles)

32 41

64 46

96 51

128 55

