Threading Opportunities in High-Perfor

Craig Ulmer
cdulmer@sandia.gov
Sandia National Laboratories

Livermore, California

Stor age | ntensive Super computing

The storage-intensive supercomputing (SISC) prdjdcat
LLNL is a research effort that is currently investiing
hardware architectures for improving the perfornead
large, data-intensive applications. In order toi@ah next-
generation performance goals for these applicatians
necessary to consider system architectures thabgrbpth
computational accelerators (e.g., FPGAs or GPUg) an
high-speed, mass-storage devices. In this workowasf on
the latter by examining the performance charadiesiof
emerging flash-memory storage devices in the conéx
multicore environments.

High-Perfor mance Flash-M emory Storage
Consumer demand for portable music devices withsmas
storage has driven down the price of flash memonat
point where flash-memory-based storage devicesneady
cost-competitive with enterprise-class hard drivéile a
number of vendors have produced flash-memory storag
devices that are compatible with existing hard-@rivO
standards, few have demonstrated products thavedeli
significant performance gains over enterprise disks
Mediocre performance in these initial products dam
attributed to a number of factors, including SATA&wV
data-transfer rates, an inability for flash drivessupport a
large number of simultaneous transactions, andugieeof
narrow flash-memory geometries that limit the artoom
internal bandwidth available in a drive.

In contrast, Fusion-io’'s ioDrive[2] is an emergifigsh-
memory storage device that is optimized for perfmoe
instead of integration with existing 1/O facilitiesThe
ioDrive’s hardware has three characteristics thaitsapart
from other devices. First, it is a PCle x4 cardtthan
support high-bandwidth data transfers with the .host
Second, the card employs a large number of flagis¢hat
are arranged to exploit parallelism both horizdptéi.e.,
bus width) and vertically (i.e, die stacks). Figalhe card
implements a high-throughput transaction manager in
hardware that allows multiple transactions to becpssed
concurrently. These architecture features enabkingle
card to deliver up to 700 MB/s of bandwidth and KO
operations per second (IOPS).

Multithreaded 1/0O Transactions

During the early stages of our investigation inte tow-
level performance characteristics of the ioDriveg w
observed an interesting effect: in several appbost
increasing the number of 1/0-performing threadseased
the overall data-transfer performance of the ioBrivhis
effect is opposite of what we have come to expeminf
traditional hard drives, where concurrent trangadi
generally degrade performance because they reshlgh-

mance Flash-M

Maya Gokhale
maya@lInl.gov

emory Storage

Lawrence Livermore National Laboratory

Livermore, California

overhead seek. As such we devised a number of tests
quantify the low-level performance characteristifsthe
ioDrive and provide examples of how threaded apfibns
on a multicore system can exploit these charatitesis

Multithreaded Microbenchmarks

As a means of observing the impact of multithreaded
performance on storage devices, we constructed four
multithreaded microbenchmark applications that quenf
operations commonly found in data-intensive apfitce.
While the applications all perform computationsdiving
vectors of floating-point numbers, we selected apens
that are 1/0 bound instead of compute bound in rotde
stress the storage subsystem. The microbenchmaeks a
threaded at a coarse granularity and assume audref-
operation, where datasets are much larger thanapacity

of main memory. While a reasonable amount of efifars
been made to maximize performance, we have nontake
heroic measures to optimize the applications targiqular
system architecture (e.g., application-level caghinrhe
intent is to give an idea of the performance that be
obtained using built-in features of the hardwareg.(e
multiple cores) and operating system (e.g., OScfilehes).
The microbenchmarks are block transfer, k-nearest
neighbors (kNN), external sort, and binary search.

The performance numbers reported are for a sirgiees
that employs two quad-core CPUs (2.33MHz Intel E&34
2GB of memory (PC2-5300f), one 80GB Fusion-io iaei
and two SATA drives arranged in a software-basedlRA
The system utilizes the Linux 2.6.23 OS found iddta 8.
In all tests, we utilized 8GB input files (64 mili vectors
of 32 single-precision floating-point values) inder to
negate caching effects.

Block Transfer

The block transfer microbenchmark measures raw-data
transfer performance characteristics, similar tcheot
benchmark programs such as 10zone [3]. The blaoister
program invokes multiple threads that issue eitkads or
writes to sequential or random locations within onenore
file. Transfers are intentionally misaligned in erdto
minimize overlap and reduce caching effects. Peréorce

is reported in terms of the aggregate amount of dat
transferred per second. For sequential reads aitelswthe
ioDrive provided 687 MB/s and 662 MB/s respectively
compared to the SATA RAID’s 118 MB/s and 99 MB/s.

However, the true benefit of flash memory becanyaagnt
in the random /O tests. As illustrated in Figure the
ioDrive provides at worst a 17x improvement ovee th
SATA RAID for random 1/O. As this data indicates$iet
ioDrive can provide better performance when it hawe
requests in-flight at the same time. The dip infgrenance



at 256KB can be attributed to the block size thatibDrive
uses internally.
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Figure 1: Random Read Performance

k-Nearest Neighbors (kNN)

evenly among the threads. As the results indigatéigure

3, RAID performance degrades as the number of dsrea
increases. In contrast, performance is maximizedhi
ioDrive when four threads are utilized.
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Figure 3: External Sort Time

The second microbenchmark implements the k-NearesBinary Search

Neighbors (KNN) algorithm for classifying input \ecs
based on their similarity to labeled, training st Each
thread in the program reads its own section oftthiming
data and locates the k training vectors that hhgeshortest
Euclidean distance to one or more input vectors.
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Figure 2: Time Required for Single KNN Pass

The amount of time required to make a full passhef
training data for a given number of input vectoss i
presented in Figure 2. While the SATA RAID’s
performance degraded with multiple threads, theriids
improved. Additionally, the upward trend for theDidve
illustrates the transition from an 1/0O bound proble CPU
bound.

External Sort

The external sort microbenchmark converts an ueddite

of vectors into a sorted file of vectors. Due te thrge size
of the input file, this implementation must processa out-
of-core in two phases. First, multiple threads read
different sections of the input file, quicksort timelividual

sections, and then write out the results to inteliate files.
Second, a single thread merges all of the interatediles
into an output file in a streaming manner. Forrfeds the
tests use a fixed buffer size of 512 MB that isidbd

The final microbenchmark performs a binary searnhao
sorted file to determine whether it contains onermare
input vectors. This search is performed directlytioa file
and requires log(n) reads per input to differetmns in
the file. In order to reduce the number of file deathe
program can be configured to build an index of fitein
main memory at start time. The average amount roé ti
required to process an input vector when optimaéxing

is available is presented in Figure 4. Similartie previous
tests, increasing the number of threads improved
performance. The SATA RAID performance numbers are
omitted from this figure as they were approximatelyms
(i.e., 100x slower than the ioDrive) for all thresides.
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