
Threading Opportunities in High-Performance Flash-M emory Storage
Craig Ulmer

cdulmer@sandia.gov
Sandia National Laboratories

Livermore, California

Maya Gokhale
maya@llnl.gov

Lawrence Livermore National Laboratory
Livermore, California

Storage Intensive Supercomputing
The storage-intensive supercomputing (SISC) project [1] at
LLNL is a research effort that is currently investigating
hardware architectures for improving the performance of
large, data-intensive applications. In order to achieve next-
generation performance goals for these applications, it is
necessary to consider system architectures that employ both
computational accelerators (e.g., FPGAs or GPUs) and
high-speed, mass-storage devices. In this work we focus on
the latter by examining the performance characteristics of
emerging flash-memory storage devices in the context of
multicore environments.

High-Performance Flash-Memory Storage
Consumer demand for portable music devices with mass
storage has driven down the price of flash memory to a
point where flash-memory-based storage devices are nearly
cost-competitive with enterprise-class hard drives. While a
number of vendors have produced flash-memory storage
devices that are compatible with existing hard-drive I/O
standards, few have demonstrated products that deliver
significant performance gains over enterprise disks.
Mediocre performance in these initial products can be
attributed to a number of factors, including SATA’s low
data-transfer rates, an inability for flash drives to support a
large number of simultaneous transactions, and the use of
narrow flash-memory geometries that limit the amount of
internal bandwidth available in a drive.

In contrast, Fusion-io’s ioDrive[2] is an emerging flash-
memory storage device that is optimized for performance
instead of integration with existing I/O facilities. The
ioDrive’s hardware has three characteristics that set it apart
from other devices. First, it is a PCIe x4 card that can
support high-bandwidth data transfers with the host.
Second, the card employs a large number of flash chips that
are arranged to exploit parallelism both horizontally (i.e.,
bus width) and vertically (i.e, die stacks). Finally, the card
implements a high-throughput transaction manager in
hardware that allows multiple transactions to be processed
concurrently. These architecture features enable a single
card to deliver up to 700 MB/s of bandwidth and 100k I/O
operations per second (IOPS).

Multithreaded I/O Transactions
During the early stages of our investigation into the low-
level performance characteristics of the ioDrive, we
observed an interesting effect: in several applications,
increasing the number of I/O-performing threads increased
the overall data-transfer performance of the ioDrive. This
effect is opposite of what we have come to expect from
traditional hard drives, where concurrent transactions
generally degrade performance because they result in high-

overhead seek. As such we devised a number of tests to
quantify the low-level performance characteristics of the
ioDrive and provide examples of how threaded applications
on a multicore system can exploit these characteristics.

Multithreaded Microbenchmarks
As a means of observing the impact of multithreaded
performance on storage devices, we constructed four
multithreaded microbenchmark applications that perform
operations commonly found in data-intensive applications.
While the applications all perform computations involving
vectors of floating-point numbers, we selected operations
that are I/O bound instead of compute bound in order to
stress the storage subsystem. The microbenchmarks are
threaded at a coarse granularity and assume out-of-core
operation, where datasets are much larger than the capacity
of main memory. While a reasonable amount of effort has
been made to maximize performance, we have not taken
heroic measures to optimize the applications to a particular
system architecture (e.g., application-level caching). The
intent is to give an idea of the performance that can be
obtained using built-in features of the hardware (e.g.,
multiple cores) and operating system (e.g., OS file caches).
The microbenchmarks are block transfer, k-nearest
neighbors (kNN), external sort, and binary search.

The performance numbers reported are for a single server
that employs two quad-core CPUs (2.33MHz Intel E5345s),
2GB of memory (PC2-5300f), one 80GB Fusion-io ioDrive,
and two SATA drives arranged in a software-based RAID0.
The system utilizes the Linux 2.6.23 OS found in Fedora 8.
In all tests, we utilized 8GB input files (64 million vectors
of 32 single-precision floating-point values) in order to
negate caching effects.

Block Transfer
The block transfer microbenchmark measures raw data-
transfer performance characteristics, similar to other
benchmark programs such as IOzone [3]. The block transfer
program invokes multiple threads that issue either reads or
writes to sequential or random locations within one or more
file. Transfers are intentionally misaligned in order to
minimize overlap and reduce caching effects. Performance
is reported in terms of the aggregate amount of data
transferred per second. For sequential reads and writes, the
ioDrive provided 687 MB/s and 662 MB/s respectively,
compared to the SATA RAID’s 118 MB/s and 99 MB/s.

However, the true benefit of flash memory became apparent
in the random I/O tests. As illustrated in Figure 1, the
ioDrive provides at worst a 17x improvement over the
SATA RAID for random I/O. As this data indicates, the
ioDrive can provide better performance when it has more
requests in-flight at the same time. The dip in performance

at 256KB can be attributed to the block size that the ioDrive
uses internally.

0

100

200

300

400

500

600

700

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Burst Size (B)

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
/s

)
ioDrive - 1 Thread
ioDrive - 2 Threads
ioDrive - 4 Threads
SATA RAID - 1 Thread
SATA RAID - 2 Threads
SATA RAID - 4 Threads

Figure 1: Random Read Performance

k-Nearest Neighbors (kNN)
The second microbenchmark implements the k-Nearest
Neighbors (kNN) algorithm for classifying input vectors
based on their similarity to labeled, training vectors. Each
thread in the program reads its own section of the training
data and locates the k training vectors that have the shortest
Euclidean distance to one or more input vectors.

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32

Input Vectors per Pass

S
in

gl
e

P
as

s
T

im
e

(s
)

ioDrive - 1 Thread

ioDrive - 2 Threads
ioDrive - 4 Threads

SATA RAID - 1 Thread

SATA RAID - 2 Threads

SATA RAID - 4 Threads

Figure 2: Time Required for Single kNN Pass

The amount of time required to make a full pass of the
training data for a given number of input vectors is
presented in Figure 2. While the SATA RAID’s
performance degraded with multiple threads, the ioDrive’s
improved. Additionally, the upward trend for the ioDrive
illustrates the transition from an I/O bound problem to CPU
bound.

External Sort
The external sort microbenchmark converts an unsorted file
of vectors into a sorted file of vectors. Due to the large size
of the input file, this implementation must process data out-
of-core in two phases. First, multiple threads read in
different sections of the input file, quicksort the individual
sections, and then write out the results to intermediate files.
Second, a single thread merges all of the intermediate files
into an output file in a streaming manner. For fairness the
tests use a fixed buffer size of 512 MB that is divided

evenly among the threads. As the results indicate in Figure
3, RAID performance degrades as the number of threads
increases. In contrast, performance is maximized in the
ioDrive when four threads are utilized.

0

100

200

300

400

500

600

700

1 2 4 8 16 32

Number of Threads

T
ot

al
 T

im
e

(s
)

ioDrive

SATA RAID

Figure 3: External Sort Time

Binary Search
The final microbenchmark performs a binary search on a
sorted file to determine whether it contains one or more
input vectors. This search is performed directly on the file
and requires log(n) reads per input to different locations in
the file. In order to reduce the number of file reads, the
program can be configured to build an index of the file in
main memory at start time. The average amount of time
required to process an input vector when optimal indexing
is available is presented in Figure 4. Similar to the previous
tests, increasing the number of threads improved
performance. The SATA RAID performance numbers are
omitted from this figure as they were approximately 10 ms
(i.e., 100x slower than the ioDrive) for all thread sizes.

0

20

40

60

80

100

120

1 2 4 8 16 32

Number of Threads

A
ve

ra
ge

 V
ec

to
r

P
ro

ce
ss

in
g

T
im

e
(µ

s)

ioDrive

Figure 4: Binary Search Peformance

References

[1] M. Gokhale, J. Cohen, A. Yoo, M. Miller, A. Jacob, C.

Ulmer, and R. Pearce, “Hardware Technologies for
High-Performance Data-Intensive Computing,” in
IEEE Computer, vol. 41, No. 4, April 2008

[2] Fusion-io website: http://www.fusionio.com
[3] Iozone Filesystem Benchmark: http://www.iozone.org

