
Implementation of a Highly Parameterized Digital PIV System On
Reconfigurable Hardware

 Abderrahmane Bennis, Miriam Leeser, Gilead Tadmor Russ Tedrake
 Abennis@ece.neu.edu, mel, tadmor@coe.neu.edu russt@mit.edu
 Northeastern University Massachusetts Institute of Technology
 Boston MA 02115 Cambridge MA 02139

Figure1. PIV experiment setup

After on algorithm
and its im

Table 1: Parameters of PIV Circuit

Particle image velocimetry (PIV) is used in experimental
fluid dynamics to obtain a detailed localized view of
velocity vectors in an unsteady fluid flow. In a nutshell, the
estimated velocity field is computed from local correlations
of snapshot-pairs of the particle-seeded flow, obtained by
high-speed cameras [1-2]. PIV is used in a wide range of
fields including aerodynamics, automotive design and
biomedical engineering. Despite many improvements to
PIV methods over the last twenty years, PIV post-
processing remains a computationally intensive task. It
becomes a serious bottleneck as snapshot acquisition rates
exceed 10,000 frames per second. In this research, we aim
to substantially speed up PIV post-processing by
implementing it in reconfigurable hardware. Furthermore,
this implementation is highly parameterized, supporting
adaptation to varying setups and application domains.

 Laser

CCD camera

Flow

Our implementation is parameterized by the
dimensions of the captured images as well as the size of
interrogation windows and sub-areas. It is also
parameterized by image quantization level (bits/pixel), the
size of on-board memory and the overlap between
interrogation windows. To the best of the authors’
knowledge, this is the first highly parameterized PIV
system implemented on reconfigurable hardware reported
in the literature. For a typical PIV configuration with
images of 1024 1024 pixels, 40 40 pixel interrogation
windows and 32 32 pixel sub-areas, we achieved over a
100-fold speedup in hardware over a standard software
implementation. Our implementation supports real-time
processing for many of these setups.

Parameterized PIV
Figure 1 provides an overview of a standard 2D PIV
experimental setup. Images of a planar cross section are
taken, as it is illuminated by laser pulses. Velocity estimates
are obtained by calculating the local displacement of
particles seeded in the fluid, in successive image pairs.

While substantial stride has been made in PIV
technology [2], the acceleration of the computations has
received relatively little attention from the high
performance computing community. The most successful
projects are reported in [3, 4, 5]. The PIV algorithm is
based on matching by cross-correlation which is
computationally intensive but offers a high degree of
parallelism. From this point of view, FPGAs promise an
affordable, high performance solution. In our research, we
went one step further by investigating the parameterization
of such solutions.

examining the cross-correlati
plementation on an FPGA board, we extracted the

parameters described in Table 1. Specifying these
parameters determines the behavior of every component in
the PIV system.

Img_width The width in pixels of the images
Img_depth The depth in pixels of the images
Area_width The width in pixels of the interrogation

window
Area_depth The depth in pixels of the interrogation

window
Sub_area_width The width in pixels of the sub-areas
Sub_area_depth The depth in pixels of the sub-areas
Displacement Number of pixels by which a sub area

is moved inside an interrogation
window

Pixel_bits Number of bits that represent a pixel
RAM_width Number of bits in each memory address
Overlap Number of interrogation windows that

overlap in an interrogation window size

e use VHDL to describe our design. VHDL has
construc

n
though V

W
ts that enable parameterized designs. It allows a

circuit to have a parameterized number of bits and
parameterized timing by using generic declarations.

PIV is a complex system to parameterize. Eve
HDL supports parameterization of small circuits,

the parameterization of large circuits is more challenging
and the literature reports only a limited number of
parameterized circuits on FPGAs. The design of
reconfigurable hardware circuits requires much more time
than the design of equivalent computing in software;
parameterization of such circuits adds another level of

mailto:@ece.neu.edu

complexity and consequently adds more time to the design.
The designer must think about designing every element of
the circuit in the general case so it can be parameterized.
While this task is straightforward for certain circuits such as
gates and adders, it is more difficult for other digital
elements such as pipelined multipliers, dividers and finite
state machines. Furthermore, the overall view of the design
should be presented in the most general way.

 Parameterization is very beneficial for both
designer

Result
eterized PIV system architecture is developed in

Table 2: Parameters of different circuits

s and consumers. Reconfigurable hardware
designers use parameterized component from libraries
instead of creating their own; this helps to decrease time to
market. For consumers, using parameterized circuits allows
the flexibility of changing the circuit parameters and then
having new circuits with new parameters in a very short
time. Such flexibility is highly demanded especially in
research areas where intensive computing is required and
appropriate computational parameters are still being
investigated or simply where application parameters differ
from one domain to another.

s

The param
VHDL and implemented on the Firebird reconfigurable
computing board from Annapolis Micro Systems. The
board has a Virtex-E XCV2000E. The board is
programmed by a C++ interface that loads the images from
the host computer to the on-board memories and load the
results when they are ready from on-board memory to the
host computer. We plan to move to a newer board, ADM-
XRC-5LX, from Alpha-data that includes a Virtex 5 FPGA.
Note the parameterization should make the transition easy.

Parameters Circuit1 Circuit2 Circuit3
Img_width 1024 1200 400
Img_depth 1024 1600 50
Area_width 40 40 50
Area_depth 40 40 50
Sub_area_width 32 32 20
Sub_area_depth 32 32 20
Displacement 1 1 1
Pixel_bits 8 8 8
RAM_width 32 32 32
Overlap 2 2 2

able 2 provides examples of circuits implemented by our

vides speedup results. We achieved
over a

T
system. Note that the parameters of Circuit1 will result in
81 cross-correlations per interrogation window. Each
correlation performs 1024 multiplications. Circuit2
performs the same number of cross-correlations per
interrogation area as Circuit1 because they have the same
interrogation window size and the same sub-area size.
However, it processes larger images, resulting in more
processing. The third circuit performs 961 cross-correlation
per interrogation window where each correlation executes
400 multiplications.

Table 3 pro
100-fold speedup in hardware over a standard

software implementation in C++ on a 3 GHz Intel XEON

microprocessor. The latency of the hardware is the average
obtained by running the circuit one thousand times.

Table 3: Speedup of different circuits

Circuits Hardware
latency (sec)

Software
latency (sec)

Speedup

Circuit1 0.025 3.21 128
Circuit2 0.027 3.76 139
Circuit3 0.00473 0.109 23

The performance results provided above are obtained using
only one correlator component. Performance can be
increased by duplicating the correlator unit and slightly
modifying the data control unit. The first circuit can process
80 pairs of images per second by adding another correlator.

As a result of this project, a library of
parameterized components has been built. The library
includes basic logic elements as well as block RAMs,
accumulators, multipliers, and fixed-point dividers. All the
computational cores are pipelined and optimized. This
library will help in rapid design of future projects and can
be extended to include more components.

Specific implementations of PIV should allow for
real-time processing and should enable new applications of
PIV, including closing the loop on feedback control.

Acknowledgements
This research was supported in part by National Science
Foundation Grant CCR-0208791 and CCR-0410246.

References
[1] M. Raffel, C. Willert and J. Kompenhans. Particle

Image Velocimetry. Springer-Verlag, 1998.

[2] R.J. Adrian, “Twenty years of Particle Image
Velocimetry.” 12th International Symposium on
Applications of Laser Techniques to Fluid Mechanics,
July 2004.

[3] E.B Arik, and J Carr, “Digital Particle Image
Velocimetry system for real-time wind tunnel
measurements.” International Congress on Instrumentation
in Aerospace Simulation Facilities (ICIASF), pp. 267-
277, September 1997.

[4] Toshihito Fujiwara, Kenji Fujimoto, and Tsutomu
Maruyama, “A real-time visualization system for PIV.”
Field Programmable Logic and its Applications (FPL),
pp. 437-447, September 2003.

[5] Haiqian Yu, Miriam Leeser, Gilead Tadmor and Stefan
Siegel, “Real-Time Particle Image Velocimetry for
Feedback Loops Using FPGA Implementation”.
Journal of Aerospace Computing, Information, and
Communication. Vol. 3 Issue 2, pp. 52–62, Feb 2006.

