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Particle image velocimetry (PIV) is used in experimental 
fluid dynamics to obtain a detailed localized view of 
velocity vectors in an unsteady fluid flow. In a nutshell, the 
estimated velocity field is computed from local correlations 
of snapshot-pairs of the particle-seeded flow, obtained by 
high-speed cameras [1-2]. PIV is used in a wide range of 
fields including aerodynamics, automotive design and 
biomedical engineering. Despite many improvements to 
PIV methods over the last twenty years, PIV post-
processing remains a computationally intensive task. It 
becomes a serious bottleneck as snapshot acquisition rates 
exceed 10,000 frames per second. In this research, we aim 
to substantially speed up PIV post-processing by 
implementing it in reconfigurable hardware. Furthermore, 
this implementation is highly parameterized, supporting 
adaptation to varying setups and application domains.  

 Laser 

CCD camera 

Flow 

Our implementation is parameterized by the 
dimensions of the captured images as well as the size of 
interrogation windows and sub-areas. It is also 
parameterized by image quantization level (bits/pixel), the 
size of on-board memory and the overlap between 
interrogation windows. To the best of the authors’ 
knowledge, this is the first highly parameterized PIV 
system implemented on reconfigurable hardware reported 
in the literature. For a typical PIV configuration with 
images of 1024 1024 pixels, 40 40 pixel interrogation 
windows and 32 32 pixel sub-areas, we achieved over a 
100-fold speedup in hardware over a standard software 
implementation.  Our implementation supports real-time 
processing for many of these setups.   

 
Parameterized PIV 
Figure 1 provides an overview of a standard 2D PIV 
experimental setup. Images of a planar cross section are 
taken, as it is illuminated by laser pulses. Velocity estimates 
are obtained by calculating the local displacement of 
particles seeded in the fluid, in successive image pairs.  

While substantial stride has been made in PIV 
technology [2], the acceleration of the computations has 
received relatively little attention from the high 
performance computing community. The most successful 
projects are reported in [3, 4, 5]. The PIV algorithm is 
based on matching by cross-correlation which is 
computationally intensive but offers a high degree of 
parallelism. From this point of view, FPGAs promise an 
affordable, high performance solution. In our research, we 
went one step further by investigating the parameterization 
of such solutions.   

 

examining the cross-correlati
plementation on an FPGA board, we extracted the 

parameters described in Table 1. Specifying these 
parameters determines the behavior of every component in 
the PIV system. 

 

Img_width The width in pixels of the images 
Img_depth The depth in pixels of the images 
Area_width The width in pixels of the interrogation 

window 
Area_depth The depth in pixels of the interrogation 

window 
Sub_area_width The width in pixels of the sub-areas 
Sub_area_depth The depth in pixels of the sub-areas 
Displacement Number of pixels by which a sub area 

is moved inside an  interrogation 
window 

Pixel_bits Number of bits that represent a pixel 
RAM_width Number of bits in each memory address
Overlap Number of interrogation windows that 

overlap in an interrogation window size
 

e use VHDL to describe our design. VHDL has 
construc

n 
though V

W
ts that enable parameterized designs.  It allows a 

circuit to have a parameterized number of bits and 
parameterized timing by using generic declarations.  

PIV is a complex system to parameterize. Eve
HDL supports parameterization of small circuits, 

the parameterization of large circuits is more challenging 
and the literature reports only a limited number of 
parameterized circuits on FPGAs. The design of 
reconfigurable hardware circuits requires much more time 
than the design of equivalent computing in software; 
parameterization of such circuits adds another level of 
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complexity and consequently adds more time to the design. 
The designer must think about designing every element of 
the circuit in the general case so it can be parameterized. 
While this task is straightforward for certain circuits such as 
gates and adders, it is more difficult for other digital 
elements such as pipelined multipliers, dividers and finite 
state machines.  Furthermore, the overall view of the design 
should be presented in the  most general way. 

 Parameterization is very beneficial for both 
designer

Result
eterized PIV system architecture is developed in 

Table 2: Parameters of different circuits 

s and consumers. Reconfigurable hardware 
designers use parameterized component from libraries 
instead of creating their own; this helps to decrease time to 
market. For consumers, using parameterized circuits allows 
the flexibility of changing the circuit parameters and then 
having new circuits with new parameters in a very short 
time. Such flexibility is highly demanded especially in 
research areas where intensive computing is required and 
appropriate computational parameters are still being 
investigated or simply where application parameters differ 
from one domain to another.  

 
s 

The param
VHDL and implemented on the Firebird reconfigurable 
computing board from Annapolis Micro Systems. The 
board has a Virtex-E XCV2000E. The board is 
programmed by a C++ interface that loads the images from 
the host computer to the on-board memories and load the 
results when they are ready from on-board memory to the 
host computer.  We plan to move to a newer board, ADM-
XRC-5LX, from Alpha-data that includes a Virtex 5 FPGA. 
Note the parameterization should make the transition easy. 
 

Parameters Circuit1 Circuit2 Circuit3 
Img_width  1024 1200 400 
Img_depth  1024 1600 50 
Area_width  40 40 50 
Area_depth       40 40 50 
Sub_area_width  32 32 20 
Sub_area_depth   32 32 20 
Displacement  1 1 1 
Pixel_bits      8 8 8 
RAM_width        32 32 32 
Overlap 2 2 2 

 
able 2 provides examples of circuits implemented by our 

vides speedup results. We achieved 
over a 

T
system. Note that the parameters of Circuit1 will result in 
81 cross-correlations per interrogation window. Each 
correlation performs 1024 multiplications. Circuit2 
performs the same number of cross-correlations per 
interrogation area as Circuit1 because they have the same 
interrogation window size and the same sub-area size. 
However, it processes larger images, resulting in more 
processing. The third circuit performs 961 cross-correlation 
per interrogation window where each correlation executes 
400 multiplications.  

Table 3 pro
100-fold speedup in hardware over a standard 

software implementation in C++ on a 3 GHz Intel XEON 

microprocessor. The latency of the hardware is the average 
obtained by running the circuit one thousand times.  

 
Table 3: Speedup of different circuits 

Circuits Hardware 
latency (sec) 

Software 
latency (sec) 

Speedup 

Circuit1 0.025 3.21 128 
Circuit2 0.027 3.76 139 
Circuit3 0.00473 0.109 23 

 
The performance results provided above are obtained using 
only one correlator component. Performance can be 
increased by duplicating the correlator unit and slightly 
modifying the data control unit. The first circuit can process 
80 pairs of images per second by adding another correlator.  

As a result of this project, a library of 
parameterized components has been built. The library 
includes basic logic elements as well as block RAMs,  
accumulators, multipliers, and fixed-point dividers. All the 
computational cores are pipelined and optimized. This 
library will help in rapid design of future projects and can 
be extended to include more components. 

Specific implementations of PIV should allow for 
real-time processing and should enable new applications of 
PIV, including closing the loop on feedback control.   
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