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Key Contributions

 We design an efficient data decomposition scheme to
achieve high performance with affordable programming
complexity

 We introduce multiple Cell/B.E. and DWT specific
optimization issues and solutions

 Our implementation achieves 34 and 56 times speedup over
one PPE performance, and 4.7 and 3.7 times speedup over
the cutting edge multicore processor (AMD Barcelona), for
lossless and lossy DWT, respectively.
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e Discrete Wavelet Transform
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Discrete Wavelet Transform (in JPEG2000)

 Decompose an image in both vertical and horizontal
direction to the sub-bands representing the coarse and
detail part while preserving space information
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Discrete Wavelet Transform (in JPEG2000)

Vertical filtering followed by horizontal filtering

Highly parallel but bandwidth intensive

Distinct memory access pattern becomes a problem
Adopt Jasper [Adams2005] as a baseline code
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 Cell Broadband Engine architecture

- Comparison with the traditional multicore processor
- Impact in performance and programmability
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Cell/B.E. vs Traditional Multi-core Processor

Traditional
SPE Multi-core
Processor
e |n-order e (Qut-of-order
* No dynamic branch * Dynamic branch
prediction prediction
e SIMD only

e Scalar + SIMD

=> Small and simple core
P => Large and complex core
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T
Cell/B.E. vs Traditional Multi-core Processor

Exe. 1] D1
Pipeline
Exe. L2
Pipeline

H

Main Memory Main Memory
e |solated constant latency e Every memory access is
LS access cache coherent
e Software controlled DMA e Hardware controlled data
data transfer between LS transfer

and main memory Gegrgia Collegeof



Cell/B.E. Architecture - Performance

* More cores within power and transistor budget

* |nvest the larger fraction of the die area for actual
computation

* Highly scalable memory architecture
* Enable fine-grain data transfer control

o Efficient vectorization is even more important (No scalar
unit)
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.
Cell/B.E. Architecture - Programmability

.

o Software (mostly programmer up to date) controlled data
transfer

e Limited LS size
 Manual vectorization
 Manual branch hint, loop unrolling, etc.

o Efficient DMA data transfer requires cache line alignment
and transfer size needs to be a multiple of cache line size.

e Vectorization (SIMD) requires 16 byte alignment and vector
Size needs to be 16 byte.

=> Challenging to deal with misaligned
data !l!
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Cell/B.E. Architecture -

Satisfies
alignment and
size
requirements

Programmability
for(i=0;i<n;i++){ No guarantee
a[i] = b[i] + c]i] in alignment
} and size

for(i =

}

v_a = ( vector int*)a;
v_b = (vector int*)b;
v_c = ( vector int*)c;
O;i<n.cl/4;
v_ali] =v_add(v_DbJi], v_c[i])

/In_c: a constant multiple of 4

I++ ) {

ead = (16 — ( (unsigned I
n_head = n_head % 4,

n bodyHelad/4
n_tail = (I

for(| 0;i<n head i++){
= pfi] + .

—a=(vectorint*)(a+n_head);
vV_b = (v orlnt )(jb + n_head );
v_c=(v head)
for(i=03 |<n ody , ++){
v_a[i] = v_add( v_bli], v_cf[i

int* )(v_a + n_body );
b = (int*)(v_b + n_body );

PSR =114 e

a[i] = b[i] + c[if;

=>Even more complex if a, b,

and c are misaligned!!!
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e Optimization Strategies
- Previous work
- Data Decomposition Scheme
- Real Number Representation
- Loop Interleaving
- Fine-grain Data Transfer Control

Georgia GCdllege of
Tegch Conmpuiing



Previous work

e Column grouping [Chaver2002] to enhance cache behavior
in vertical filtering

 Muta et al. [Muta2007] optimized convolution based
(require up to 2 times more operations than lifting based
approach) DWT for Cell/B.E. \

- High single SPE performance v |E==»

- Does not scale above 1 SPE  sub-band

high .
freq.
sub-band

Y

column group width
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Data Decomposition Scheme

Cache line aligned A multiple of the

cache line size

) 2-D array width Row padding
F Q\ _ |
A unit of data :
transfer and :

2-D computation :
array ~— ! P . i
height | A unit of data |

distribution to i
the processing :
v elements |
< — < —> < —> < — < e e >
A multiple of the Remainder
cache line size e
Distributed to Processed by

the SPEs Georgia @&ﬁg&;gﬁ
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Data Decomposition Scheme

o Satisfies the alighment and size requirements for efficient
DMA data transfer and vectorization.

* Fixed LS space requirements regardless of an input image
size
e Constant loop count

—]

\ -
conistant wigith| A unit of data
transfer and

computation
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Vectorization - Real number represéntatio

o Jasper adopts fixed point representation
- Replace floating point arithmetic with fixed point arithmetic

- Not a good choice for Cell/B.E.

Inst. Latency
mpyh $5, $3, $4 (SPE)
mpyh $2, $4, $3 mpyh |7 cycles
mpyu $4, $3, $4 fm $3, $3, $4
a $3, $5, $2 mpyu [ cycles
a $3, $3, $4 3 2 cycles

fm 6 cycles
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Loop Interleaving

* |In a naive approach, a single vertical filtering involves 3 or 6

times data transfer

 Bandwidth becomes a bottleneck
* |Interleave splitting, lifting, and optional scaling steps

Does not fit into
the LS

Y
N | T

low

freq.
sub-bapd

high Tt
freq.

sub-bar - /

colulgn grgip width
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Loop Interleaving

* First interleave multiple lifting steps

 Then, merge splitting step with the interleaved lifting step

lowO

highO

Overwritten
before read

low3

lowO

lowl

low2

Splitting

low3

highO

high3

high1

Interleaved
Lifting

high2

high3

lowQO*

lowl*

low2*

low3*
highO*

high1*

high2*

high3*

e Use temporary main memory buffer for the upper half
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Fine-grain Data Transfer Control

* |nitially, we copy data from the buffer after the interleaved
loop is finished

* Yet, we can start it just after low2 and high2 are read

* Cell/B.E.’s software controlled DMA data transfer enables
this

lowO lowO lowO*
highO lowl lowl*
lowl low?2 low2*
highl Splitt low3 Interleaved lows”
ow2 || SPMNG 2 Thigho || Litting  / [higho®
high2 highl highl*
low3 high2 high2*
high3 high3 high3*
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e Performance Evaluation
- Comparison with the AMD Barcelona
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* Execution time and scalability up to 2 Cell/B.E. chips (IBM QS20)

* 3800 X 2600 color image, 5 resolution levels



Performance Evaluation - Compa
x86 Architecture

-One 3.2 GHz Cell/B.E. chip (IBM QS20)
-One 2.0 GHz AMD Barcelona chip (AMD Quad-core Opteron 8350)

5000 Parallelization | OpenMP based
1.0 parallelization
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e Conclusions
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Conclusions

e Cell/B.E. has a great potential to speed-up parallel
workloads but requires judicious implementation

 We design an efficient data decomposition scheme to
achieve high performance with affordable programming
complexity

e QOur implementation demonstrates 34 and 56 times
speedup over one PPE, and 4.7 and 3.7 times speedup over
the AMD Barcelona processor with one Cell/B.E. chip

* Cell/B.E. can also be used as an accelerator in combination
with the traditional microprocessor
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