

Optimizing Discrete Wavelet Transform on the Cell Broadband Engine

Seunghwa Kang David A. Bader

SONY

TOSHIBA

Georgia Tech College of Computing

IER

Computational Science and Engineering

Computing

Key Contributions

- We design an efficient data decomposition scheme to achieve high performance with affordable programming complexity
- We introduce multiple Cell/B.E. and DWT specific optimization issues and solutions
- Our implementation achieves 34 and 56 times speedup over one PPE performance, and 4.7 and 3.7 times speedup over the cutting edge multicore processor (AMD Barcelona), for lossless and lossy DWT, respectively.

(റ്റത്തി കുറ്റത്തി

Computing

Georgia

Tech

Presentation Outline

- Discrete Wavelet Transform
- Cell Broadband Engine architecture
 - Comparison with the traditional multicore processor
 - Impact in performance and programmability

Optimization Strategies

- Previous work
- Data decomposition scheme
- Real number representation
- Loop interleaving
- Fine-grain data transfer control
- Performance Evaluation
 - Comparison with the AMD Barcelona
- Conclusions

Presentation Outline

Discrete Wavelet Transform

- Cell Broadband Engine architecture
 - Comparison with the traditional multicore processor
 - Impact in performance and programmability

Optimization Strategies

- Previous work
- Data decomposition scheme
- Real number representation
- Loop interleaving
- Fine-grain data transfer control
- Performance Evaluation
 - Comparison with the AMD Barcelona
- Conclusions

Georgia College of Tech Computing

Discrete Wavelet Transform (in JPEG2000)

• Decompose an image in both vertical and horizontal direction to the sub-bands representing the coarse and detail part while preserving space information

Computing

lech

Discrete Wavelet Transform (in JPEG2000)

- Vertical filtering followed by horizontal filtering
- Highly parallel but bandwidth intensive
- Distinct memory access pattern becomes a problem
- Adopt Jasper [Adams2005] as a baseline code

Computer Science/Computer Engineering/Computing	Channess & Dall/CBC	
	AL PORT HMS: ND. VPPH 2010 IS	
	The second se	
		4
		4
		4
		4
		4
		4
\bullet	+ + + + + + + + + + + + + + + + + + + +	

Collega of

Computting

Georgia

Fech

Presentation Outline

- Discrete Wavelet Transform
- Cell Broadband Engine architecture
 - Comparison with the traditional multicore processor
 - Impact in performance and programmability
- Optimization Strategies
 - Previous work
 - Data decomposition scheme
 - Real number representation
 - Loop interleaving
 - Fine-grain data transfer control
- Performance Evaluation
 - Comparison with the AMD Barcelona
- Conclusions

Cell/B.E. vs Traditional Multi-core Processor

SPE

Traditional Multi-core Processor

- In-order
- No dynamic branch prediction
- SIMD only
- => Small and simple core

- Out-of-order
- Dynamic branch prediction
- Scalar + SIMD

Georgia

Tech

=> Large and complex core

College of Computing

Cell/B.E. vs Traditional Multi-core Processor

Cell/B.E. Architecture - Performance

- More cores within power and transistor budget
- Invest the larger fraction of the die area for actual computation
- Highly scalable memory architecture
- Enable fine-grain data transfer control
- Efficient vectorization is even more important (No scalar unit)

orgia lech

Computing

Cell/B.E. Architecture - Programmability

- Software (mostly programmer up to date) controlled data transfer
- Limited LS size
- Manual vectorization
- Manual branch hint, loop unrolling, etc.
- Efficient DMA data transfer requires cache line alignment and transfer size needs to be a multiple of cache line size.
- Vectorization (SIMD) requires 16 byte alignment and vector size needs to be 16 byte.

=> Challenging to deal with misaligned data !!!

Cell/B.E. Architecture - Programmability

Collegeof

Computing

Georgia

Tech

Presentation Outline

- Discrete Wavelet Transform
- Cell Broadband Engine architecture
 - Comparison with the traditional multicore processor
 - Impact in performance and programmability

Optimization Strategies

- Previous work
- Data Decomposition Scheme
- Real Number Representation
- Loop Interleaving
- Fine-grain Data Transfer Control
- Performance Evaluation
 - Comparison with the AMD Barcelona
- Conclusions

Previous work

- Column grouping [Chaver2002] to enhance cache behavior in vertical filtering
- Muta et al. [Muta2007] optimized convolution based (require up to 2 times more operations than lifting based approach) DWT for Cell/B.E.
- High single SPE performance
- Does not scale above 1 SPE

Data Decomposition Scheme

Data Decomposition Scheme

- Satisfies the alignment and size requirements for efficient DMA data transfer and vectorization.
- Fixed LS space requirements regardless of an input image size
- Constant loop count

Vectorization – Real number representation

- Jasper adopts fixed point representation
- Replace floating point arithmetic with fixed point arithmetic
- Not a good choice for Cell/B.E.

mpyh \$5, \$3, \$4 mpyh \$2, \$4, \$3 mpyu \$4, \$3, \$4 fm \$3, \$3, \$4 a \$3, \$5, \$2 a \$3, \$3, \$4

Inst.	Latency (SPE)	
mpyh	7 cycles	
mpyu	7 cycles	
а	2 cycles	
fm	6 cycles	
Georgia College of		

Loop Interleaving

- In a naïve approach, a single vertical filtering involves 3 or 6 times data transfer
- Bandwidth becomes a bottleneck
- Interleave splitting, lifting, and optional scaling steps

College of

Computting

Georgia Tech

Loop Interleaving

- First interleave multiple lifting steps
- Then, merge splitting step with the interleaved lifting step

Use temporary main memory buffer for the upper half

Fine-grain Data Transfer Control

- Initially, we copy data from the buffer after the interleaved loop is finished
- Yet, we can start it just after low2 and high2 are read
- Cell/B.E.'s software controlled DMA data transfer enables this

Collega of

Computing

Georgia

Fech

Presentation Outline

- Discrete Wavelet Transform
- Cell Broadband Engine architecture
 - Comparison with the traditional multicore processor
 - Impact in performance and programmability

Optimization Strategies

- Previous work
- Data decomposition scheme
- Real number representation
- Loop interleaving
- Fine-grain data transfer control

Performance Evaluation

- Comparison with the AMD Barcelona
- Conclusions

Performance Evaluation

- * 3800 X 2600 color image, 5 resolution levels
- * Execution time and scalability up to 2 Cell/B.E. chips (IBM QS20)

Georgia

Tech

College of

Computing

Performance Evaluation – Comparison with x86 Architecture

-One 3.2 GHz Cell/B.E. chip (IBM QS20) -One 2.0 GHz AMD Barcelona chip (AMD Quad-core Opteron 8350)

Parallelization	OpenMP based parallelization
Vectorization	Auto-vectorization with compiler directives
Real Number Representation	Identical to the Cell/B.E. case
Loop Interleaving	Identical to the Cell/B.E. case
Run-time profile feedback	Compile with run- time profile feedback

* Optimization for the Barcelona

Georgia Coll Tech Con

Georgia

Tech

College of Computing

Presentation Outline

- Discrete Wavelet Transform
- Cell Broadband Engine architecture
 - Comparison with the traditional multicore processor
 - Impact in performance and programmability

Optimization Strategies

- Previous work
- Data decomposition scheme
- Real number representation
- Loop interleaving
- Fine-grain data transfer control
- Performance Evaluation
 - Comparison with the AMD Barcelona

Conclusions

Computing

Conclusions

- Cell/B.E. has a great potential to speed-up parallel workloads but requires judicious implementation
- We design an efficient data decomposition scheme to achieve high performance with affordable programming complexity
- Our implementation demonstrates 34 and 56 times speedup over one PPE, and 4.7 and 3.7 times speedup over the AMD Barcelona processor with one Cell/B.E. chip
- Cell/B.E. can also be used as an accelerator in combination with the traditional microprocessor

Acknowledgment of Support

Georgia

Tech

College of

Computing

David A. Bader

References

- [1] M.D. Adams. The JPEG-2000 Still Image Compression Standard, Dec. 2005.
- [2] D. Chaver, M. Prieto, L. Pinuel, and F. Tirado. Parallel wavelet transform for large scale image processing, Int'l Parallel and Distributed Processing Symp., Apr. 2002.
- [3] H. Muta, M. Doi, H. Nakano, and Y. Mori. Multilevel parallelization on the Cell/B.E. for a Motion JPEG 2000 encoding server, *ACM Multimedia Conf.*, Sep. 2007.

