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• 1D Fourier Transform
• Mapping 1D FFTs onto Cell
• 1D as 2D Traditional Approach 
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1D Fourier Transform

gj = Σ
 

fk e-2πijk/N
k = 0

N-1

• This is a simple equation
• A few people spend a lot of their careers trying to make it 

run fast 

• This is a simple equation
• A few people spend a lot of their careers trying to make it 

run fast
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Mapping 1D FFT onto Cell

• Small FFTs can fit into a single LS 
memory.  4096 is the largest size.

• Large FFTs must use XDR 
memory as well as LS memory.

FFT Data

• Cell FFTs can be classified by 
memory requirements 

• Medium and large FFTs 
require careful memory 
transfers 

• Cell FFTs can be classified by 
memory requirements

• Medium and large FFTs 
require careful memory 
transfers

• Medium FFTs can fit into multiple LS 
memory.  65536 is the largest size.
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1D as 2D Traditional Approach
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• 1D as 2D FFT reorganizes data a lot
– Timing jumps when used

• Can reduce memory for twiddle tables
• Only one FFT needed

• 1D as 2D FFT reorganizes data a lot
– Timing jumps when used

• Can reduce memory for twiddle tables
• Only one FFT needed
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• Communications
• Memory 
• Cell Rounding

Outline

• Introduction

• Technical Challenges

• Design

• Performance

• Summary



MIT Lincoln Laboratory
HPEC 2008-7

SMHS 9/24/2008

Communications

Bandwidth to 
XDR memory 

25.3 GB/s

SPE connection to 
EIB is 50 GB/s

• Minimizing XDR memory accesses is critical
• Leverage EIB 
• Coordinating SPE communication is desirable

– Need to know SPE relative geometry

• Minimizing XDR memory accesses is critical
• Leverage EIB 
• Coordinating SPE communication is desirable

– Need to know SPE relative geometry

EIB bandwidth is 
96 bytes / cycle
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Memory

XDR Memory is much 
larger than 1M pt FFT 

requirements

Each SPE has 256 KB 
local store memory 

Each Cell has 2 MB  
local store memory 

total • Need to rethink algorithms to leverage the 
memory 

– Consider local store both from individual and 
collective SPE point of view 

• Need to rethink algorithms to leverage the 
memory

– Consider local store both from individual and 
collective SPE point of view
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Cell Rounding

• The cost to correct basic binary operations, add, 
multiply, and subtract, is prohibitive

• Accuracy should be improved by minimizing 
steps to produce a result in algorithm 

IEEE 754 Round to Nearest Cell  (truncation)

b00 b00b01 b10 b01 b10

1 bit

• Average value – x01 + 0 bits • Average value – x01 + .5 bit



MIT Lincoln Laboratory
HPEC 2008-10

SMHS 9/24/2008

• Using Memory Well
• Reducing Memory Accesses
• Distributing on SPEs
• Bit Reversal
• Complex Format

• Computational Considerations

Outline

• Introduction

• Technical Challenges

• Design

• Performance

• Summary
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FFT Signal Flow Diagram and 
Terminology
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• Size 16 can illustrate concepts for large FFTs
– Ideas scale well and it is “drawable”

• This is the “decimation in frequency” data flow
• Where the weights are applied determines the algorithm

• Size 16 can illustrate concepts for large FFTs
– Ideas scale well and it is “drawable”

• This is the “decimation in frequency” data flow
• Where the weights are applied determines the algorithm

butterfly

block

radix 2 stage
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Reducing Memory Accesses

• Columns will be 
loaded in strips that 
fit in the total Cell 
local store

• FFT algorithm 
processes 4 
columns at a time to 
leverage  SIMD 
registers

• Requires separate 
code from row FFTS

• Data reorganization 
requires SPE to SPE 
DMAs

• No bit reversal

1024

1024

64

4
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1D FFT Distribution with Single 
Reorganization
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• One approach is to load everything onto a single SPE to do 
the first part of the computation 

• After a single reorganization each SPE owns an entire block 
and can complete the computations on its points 

• One approach is to load everything onto a single SPE to do 
the first part of the computation

• After a single reorganization each SPE owns an entire block 
and can complete the computations on its points
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1D FFT Distribution with Multiple 
Reorganizations
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• A second approach is to divide groups of contiguous 
butterflies among SPEs and reorganize after each stage until 
the SPEs own a full block 

• A second approach is to divide groups of contiguous 
butterflies among SPEs and reorganize after each stage until 
the SPEs own a full block

reorganize
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Selecting the Preferred Reorganization

Number of 
SPEs

Number of 
Exchanges

Data Moved 
in 1 DMA

Number of 
Exchanges

Data Moved 
in 1 DMA

2 2 N / 4 2 N / 4
4 12 N / 16 8 N / 8
8 56 N / 64 24 N / 16

Single Reorganization Multiple Reorganizations

• Evaluation favors multiple reorganizations
– Fewer DMAs have less bus contention

 Single Reorganization exceeds the number of busses
– DMA overhead (~ .3μs)  is minimized
– Programming is simpler for multiple reorganizations

• Evaluation favors multiple reorganizations
– Fewer DMAs have less bus contention

 Single Reorganization exceeds the number of busses
– DMA overhead (~ .3μs)  is minimized
– Programming is simpler for multiple reorganizations

N - the number of elements in SPE memory, P - number of SPEs

• Number of exchanges
P * log2 (P)

• Number of elements 
exchanged

(N / 2) * log2 (P)

• Number of exchanges
P * (P – 1)

• Number of elements 
exchanged

N * (P – 1) / P

Typical N is 32k 
complex 
elements



MIT Lincoln Laboratory
HPEC 2008-16

SMHS 9/24/2008

Column Bit Reversal

• Bit reversal of columns 
can be implemented by 
the order of 
processing rows and 
double buffering

• Reversal row pairs are 
both read into local 
store and then written 
to each others memory 
location

000000001

100000000

Binary Row 
Numbers

• Exchanging rows for bit reversal has a low cost 
• DMA addresses are table driven
• Bit reversal table can be very small 
• Row FFTs are conventional 1D FFTs
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Complex Format

• Interleaved complex format reduces number of 
DMAs

• Two common formats for complex
– interleaved
– split

real 1real 0

imag 0 imag 1

real 0 real 1 imag 1imag 0

• Complex format for user should be 
standard

• Internal format conversion is light 
weight

• Internal format should benefit the 
algorithm

– Internal format is opaque to user

• SIMD units need split 
format for complex 
arithmetic
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• Using Memory Well
• Computational Considerations

•Central Twiddles
•Algorithm Choice

Outline

• Introduction

• Technical Challenges

• Design

• Performance

• Summary
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Central Twiddles

• Central twiddles can take as 
much memory as the input data

• Reading from memory could 
increase FFT time up to 20%

• For 32-bit FFTs central twiddles 
can be computed as needed

– Trigonometric identity 
methods require double 
precision

 Next generation Cell should 
make this the method of 
choice

– Direct sine and cosine 
algorithms are long
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• Central twiddles are a 
significant part of the 
design 

Central Twiddles for 1M FFT
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Algorithm Choice

• Cooley-Tukey has a constant operation count
– 2 muladd to compute each result for each stage

• Gentleman-Sande varies widely in operation count
– 1 – 3 operations for each result 

• DC term has the same accuracy on both
• Gentleman-Sande worst term has 50% more roundoff error 

when fused multiply-add is available

Cooley-Tukey

-wk

wk
a

b

a + b * wk

a - b * wk

Gentleman-Sande

-wk

wk

a

b

a + b

(a – b) * wk

Computational 
Butterflies
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Radix Choice

• What counts for accuracy is how many operations from the 
input to a particular result

Cooley Tukey Radix 4
t1 = xl * wz

t2 = xk * wz/2

t3 = xm * w3z/2

s0 = xj + t1

a0 = xj – t1

s1 = t2 + t3

a1 = t2 – t3

yj = s0 + s1

yk = s0 – s1

yl = a0 – i * a1

ym = a0 + i * a1

• Number of operations for 1 radix 4 stage (real or 
imaginary:   9 ( 3 mul, 3 muladd, 3 add)

• Number of operations for 2 radix 2 stages (real or 
imaginary) :  6 ( 6 muladd)

• Higher radices reuse computations but do not 
reduce the amount of arithmetic needed for 
computation

• Fused multiply add instructions are more accurate 
than multiply followed by add

• Radix 2 will give the best accuracy
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Estimating Performance

• Timing estimates typically cannot include all factors
– Computation is based on the minimum number of instructions to 

estimate
– I/O timings are based on bus speed and amount of data
– Experience is a guide for the efficiency of I/O and computations

I/O estimate:
• Number of byte transfers 

to/from XDR memory:
33560192 (minimum)

• Bus speed to XDR: 25.3 GHz
• Estimated efficiency: 80%
• Minimum I/O time:

1.7 ms

Computation estimate:
• Number of operations: 

104875600
• Maximum FLOPS: 205
• Estimated efficiency: 85%
• Minimum Computation time:

.6 ms (8 SPEs)

1M FFT estimate (without full ordering): 2 ms
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Preliminary Timing Results

• Timing results are close to predictions
– 4 SPEs about a factor of 4 from prediction
– 8 and 16 SPEs closer to prediction
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• Timings were 
performed on 
Mercury CTES

– QS21 @3.2 GHz 
Dual Cell Blades
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Summary

• A good FFT design must consider the hardware 
features

– Optimize memory accesses
– Understand how different algorithms map to the 

hardware
• Design needs to be flexible in the approach 

– “One size fits all” isn’t always the best choice
– Size will be a factor

• Estimates of minimum time should be based on 
the hardware characteristics

• 1M point FFT is difficult to write, but possible
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