
Hardware-in-the-Loop Simulation with the
Common Simulation Framework

Judith D. Gardiner
Ohio Supercomputer Center

judithg@osc.edu

Objectives1
This paper describes a project to demonstrate the
effectiveness of using the Common Simulation Framework
(CSF) for hardware-in-the-loop (HWIL) testing. Our
objectives were twofold, to enhance the real-time support
provided in CSF and to provide example code for a HWIL
simulation using CSF. Similar work in the past has involved
changes to CSF that were unique to the local operating
system and hardware under test. Our goal was to create
software that could be efficiently reused and adapted for
other simulations. As a simple demonstration we used CSF
to drive a motion simulator table through a preprogrammed
trajectory.

Hardware and Software Environment
The test environment consists of a quad core computer
running the simulation, a reflective memory network, a
motion simulator table, and a table controller. The
simulation computer runs the iHawk operating system,
which is a real-time version of Linux.

The simulation sends trajectory information in real-time to
the table controller via reflective memory. Access to
reflective memory is handled through a locally developed
program called RAP (Resource Allocation Program).
Reflective memory is a real-time networking technology
designed to mimic shared memory.

Common Simulation Framework
CSF is a simulation framework developed by AMRDEC
(Army, Huntsville) that allows users to assemble
component models into a complete missile simulation. It is
intended to be general enough to be used in a variety of
computational environments and to support a wide range of
simulation domains.

The current version of CSF includes most of the features
required for real-time operation. Multithreading is
supported and is easy to use. There is a GUI for convenient
development and a batch mode for fast execution. Custom
real-time clocks can be added or a default real-time clock
can be used.

In the course of our work we discovered a few gaps in
CSF’s real-time capabilities and made code modifications
to correct them. Most of our development, however, was
done within the framework without touching the CSF core
code.

CSF Extensions for the HWIL Demo
For the demonstration we read trajectory points from a file
and sent them to the motion table controller at the

appropriate real-time rate. We developed a real-time
monitor and a generic reflective memory interface for use
in the demo.

When running a simulation with hardware in the loop, or in
any other hard real-time environment, it is necessary to
monitor for frame overruns. Updates must be sent to the
hardware at regular intervals. If some portion of the
simulation takes too long and an update is not ready at the
specified time, the simulation results will not be valid.
There may even be a risk of hardware damage if the
simulation is allowed to continue. It is essential to provide
the ability to terminate the simulation automatically and
gracefully in this situation.

CSF does not have a real-time monitoring capability built
in, but it does provide the hooks for adding such a
capability as a plug-in library. We have developed a real
time monitor that can be run as part of any real-time
simulation. It can be run in a separate thread to eliminate
any performance penalty. The monitor reports on frame
overruns and can be configured to terminate the simulation
if an overrun is detected.

For the interface to reflective memory we created a general-
purpose reflective memory API to wrap the RAP interface
that we were required to use. The wrapper will facilitate
reuse of the code in different environments.

Conclusion
The goals of this project involve both real-time
performance and generality of the software solution.
Results will be presented relative to both goals. The project
is not yet complete, but we expect to be able to drive the
motion table at 1200 Hz using a simulation running under
CSF. Furthermore, our software solution will be general
enough to be of use to others in the DoD test and simulation
community.

The extensions and modifications to CSF will be offered to
the CSF steering committee for acceptance in the standard
distribution. If accepted, the software will be available to a
wide range of users across DoD’s test and range facilities.

Acknowledgment
This publication was made possible through support
provided by DoD HPCMP PET activities through
Mississippi State University under contract No.
GS04T01BFC0060. The opinions expressed herein are
those of the author(s) and do not necessarily reflect the
views of the DoD or Mississippi State University.

All information contained herein was obtained from open sources.

