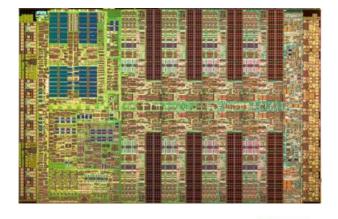
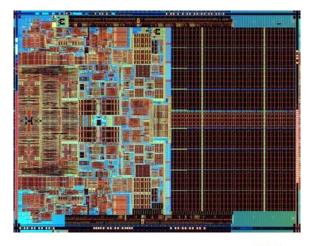
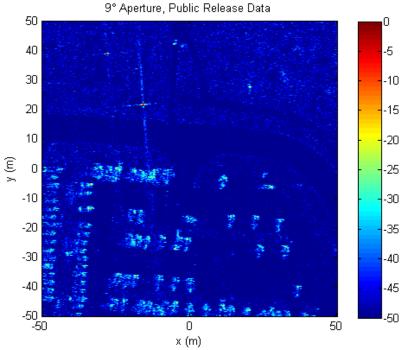


SAR Processing Performance on Cell Processor and Xeon


Mark Backues, SET Corporation Uttam Majumder, AFRL/RYAS

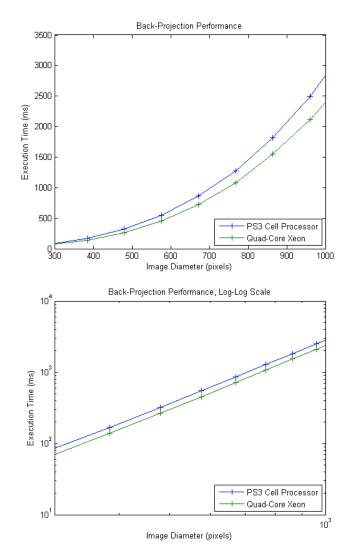

© 2007 SET Associates Corporation

- SAR imaging algorithm optimized for both Cell processor and Quad-Core Xeon
 - Cell implementation partially modeled after Richard Linderman work
- // Performance between two processors similar
- Cell would generally perform better on a lower complexity problem
 - Illustrated by bilinear interpolation implementation
- Relative performance can be understood from architectural differences



Back-Projection on Cell and Xeon

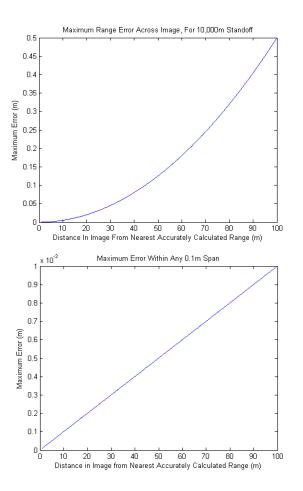
- Simple, general purpose SAR imaging implementation
 - Order n³ for n×n pixel image tiles
 - Per pulse:
 - 4x oversampled range compression FFT
 - Per pulse, per pixel:
 - Single precision range calculation
 - Linear range interpolation
 - Nearest neighbor table lookup for 4pi/c·f₀·R phase term



- Øptimized on both processor types
 - SIMD intrinsics for 4x parallelism per processing unit
 - Multiple threads
 - Loops unrolled to eliminate instruction related stalls

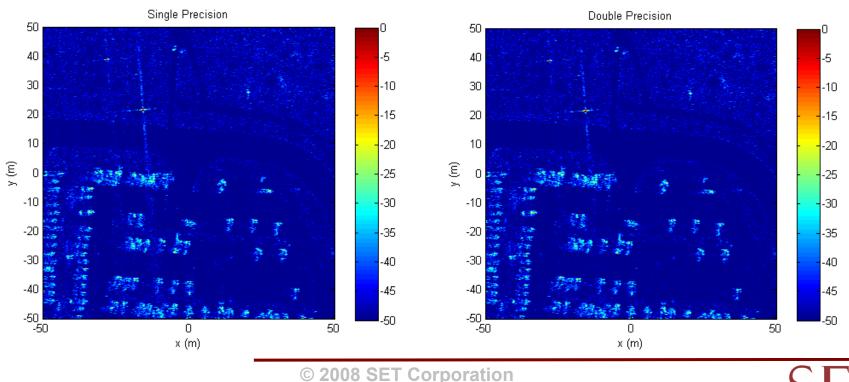
Back-Projection Performance

- Performance on one Intel Quad-Core
 Xeon 20% faster than on one IBM Cell
 processor
 - 3.2GHz clock rate
 - Range compression not included in timing analysis
 - Fast compared to projection process
 - Often performed by hardware front-end
- Cell implementation more difficult
 - Explicit DMAs required
 - Use of select, shift, and shuffle intrinsics requried for efficient data movement
- Four 3.2GHz Xeon cores equivalent to eight 1.6GHz cores
 - Global memory access not a problem

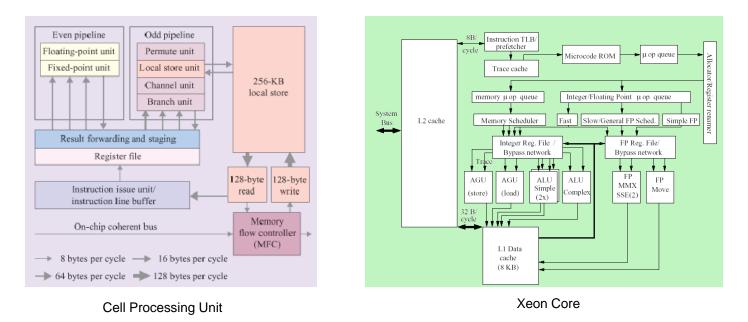


Back-Projection Range Calculation

- Range calculation accounts for 43% of execution time on Cell processor, and 33% on Xeon
- Square root used in range calculation, for maximum generality
- The square root can be replaced by a much faster approximation
 - ||r|| ||r-s|| ≈ <r,s>/||r|| when ||s||<<||r||</p>
 - Other approximations are possible
 - The allowable error is application dependent
- The performance on Cell processor is then closer to the performance on quadcore Xeon


Error for Inner-Product Range Approximation

Single Verses Double Precision


- M Double precision most important for range calculation
- PS3 Cell double precision instructions very slow
 - 13 cycle latencies with unavoidable 6 cycle stalls
 - Throughput ~6x worse where used
- M Double precision comparison would be much less favorable for PS3 Cell

Why Performance is Not Predicted by Peak GFLOPS Figure (cont.)

- Instruction pipeline differences
 - Cell processing element has two pipelines, but only one is for arithmetic instructions
 - Xeon has multiple ports and execution units, and can issue two (2-cyclethroughput) instructions per cycle, with data movement often not requiring additional cycles

Why Performance is Not Predicted by Peak GFLOPS Figure (cont.)

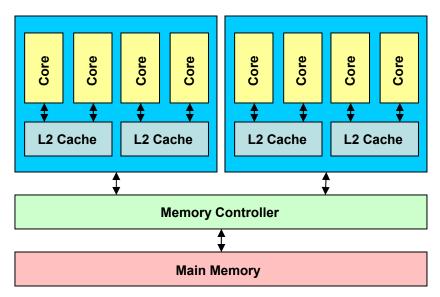
- Øperation count poorly reflects computational difficulty
 - Transcendental functions are orders of magnitude slower than most other arithmetic operations
 - Efficiency of table lookup depends on instruction set characteristics not reflected by peak performance figure
 - Shuffling of data into registers for efficient SIMD operation can be the slowest part of the process, and is not predicted by operation count

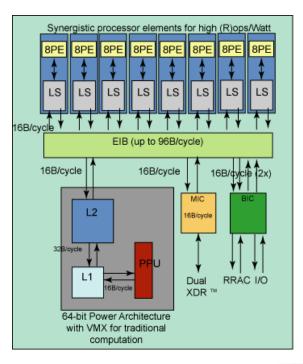
1D	2345	rotqbyi	\$45,\$113,8	
0D	3456	shli	\$115,\$81,4	
1D	345678	lqd	\$94,224(\$sp)	
0D	4567	shli	\$113,\$55,4	
1D	456789	stqd	\$34,5984(\$sp)	
0D	5678	shli	\$112,\$53,4	
1D	567890	lqx	\$31,\$126,\$127	
0D	67	ceqi	\$80,\$65,0	
1D	678901	lqd	\$95,240(\$sp)	
0D	78	andi	\$65,\$27,1	
1D	7890	rotqbyi	\$15,\$105,8	
0D	8901	shli	\$105,\$45,4	
1D	8901	rotqbyi	\$60,\$28,8	
0D	90	ceqi	\$65,\$65,0	
1D	9012	rotqbyi	\$52,\$19,8	

Example Cell processor disassembly and timing analysis

Bilinear Interpolation on Cell and Xeon

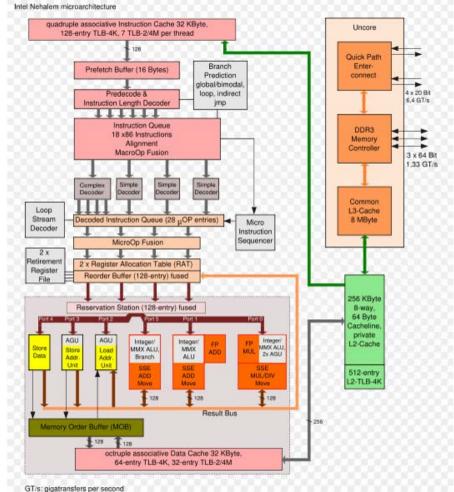
- Bilinear affine transformation of 256x256 pixel 8-bit images
 - Vector intrinsics used for both implementations
 - Instruction related stalls eliminated on Cell
 - DMA time still negligible on Cell no double buffering required
 - Data movement and type conversions required significant optimization on Xeon
 - More difficult programming would be required for Cell to handle images too big to fit in 256KB memory local to each processing unit
 - Order n^2 for $n \times n$ pixel images




Xeon Memory Bottleneck vs Cell

- Four 3.2GHz Xeon cores have
 1.5x the performance of eight
 1.6GHz cores
 - Front-side bus is 1600MHz vs 1066Mhz
 - Main memory access is limiting factor, not computation or cache use

- One 3.2GHz IBM Cell processor has 2.4x the performance of one 3.2GHz Intel Quad-Core Xeon
 - Data movement much more difficult to program, but much more efficient


© 2008 SET Corporation

Current and Future Work

- SSE Optimized polar-format
 - Image warped to fixed coordinates
 - Includes wavefront curvature and other corrections
 - Currently about 7x faster than back-projection implementation, but with limitations
- Intel Nehalem
 - On-board memory controller
 - 'QuickPath' memory interconnect
 - Up to 8 cores per die
- Intel Larrabee
 - 24 x86 cores
 - 4-way multithreading per core
 - SSE
 - 32KB L1 cache, 512KB L2 Cache

