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I ntroduction
Constraint satisfaction and optimization techniqua®

to the CSP. A solver can be configured to findirale
solution, all solutions, or alternatively, to finthe best

commonly employed in scheduling problems, indultria solution, where “best” is characterized by a ugperetfied

manufacturing and automation processes,
concepts from Operations Research (OR) and Adifici
Intelligence (Al). Constraint satisfaction has albeen

borrowingcost function.

Figure 1 illustrates the internal architecture offimite
domain constraint solver [4]. A solver is develd@gound

applied in the design, synthesis and optimization 0 the concept of a central repository called the taitg

embedded systems.
constraint satisfaction is static scheduling andouece
allocation, subject to end-to-end timing and reseur
constraints. Typical applications of constraintisfaction
involve the design-time specification of both th@lgem
and non-functional requirements as constraintschviaire
provided to a solver program to search for an ogtior
near-optimal solution.

A problem particularly suited tOgiore  The constraint store contains informationeach

variable and its domain in the CSP. Computatiemaities
called propagators implement the basic constramtthe
problem, by reading domain information on their
constituent variables from the constraint store,d an
attempting to shrink the domains through mathersatitd
deduction. Each propagator executes as a sephratal.

The bounds analysis implemented via propagation is

In recent years a few examp|es of app|y|ng comstrai insufficient to converge to a solution. Ther6f0re,
satisfaction at runtime have emerged for supportingPropagation is followed by a step called distribotiwhich
dynamic system adaptation and reconfiguration. Theconveys new information to the constraint storentgans
runtime selection between various web services andPf variable assignment. At each distribution stap,solver
Components based on user-speciﬁed Qua“ty of Bervi saves the state of the constraint store, in casendw
(QOS) requirements has been modeled as a Constraiﬁlﬂformation added leads to a ContradiCtion, whicboula

satisfaction problem [1]. Constraint satisfactioas been
used to realize an on-board paper path controflardigital
printer [2].

In this work, we address the development of an elthe

finite domain constraint solver targeting an FPGA.

Constraint solvers are concurrent in nature, amd le
themselves to parallel implementation. We explbi¢
spatial parallelism offered by COTS FPGA architeetu
via the instantiation of multiple soft-core proaass which
collectively implement the constraint solver. Saofte
processors facilitate the development of flexibddtvgare-
based algorithms for implementing individual coastts.
The multi-core architecture realized on the FPGélitates
tight inter-core synchronization required when Bsav
constraints in parallel.

Overview of Constraint Satisfaction

A finite domain constraint satisfaction problem &S
consists of set of variables as well as a set of basic
constraints. Each variable is restricted to aaarof finite
cardinality, typically consisting of a set of ine¥gvalues.
The basic constraints represent relations betwaenbles.
A solution to the CSP consists of a binding of ealtio the

variables inx, such that all the basic constraints are

satisfied. A solver is a program which takes a ckt
variables and basic constraints and searches $otwion

necessitate backtracking. Through alternating betw
propagation and distribution, the constraint solam
exhaustively traverse the solution space and déterra
solution to the CSP.
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Figure1: Constraint store.

Architecture of a Constraint Solver

Figure 2 represents the architecture employeddalizing
an FPGA-based finite domain constraint solver. ARG
lend themselves to spatial parallelism, offeringgéa
numbers of distributed memories and the abilitycteate
numerous parallel processing elements. Currenbaphes
to parallelization of finite domain constraint sgafocus on
the partitioning of the CSP based on distributiteps [3].
Our approach seeks to exploit the inherent paistfelin
the propagation step of the FD solver. Our archite
targets a Xilinx FPGA, and consists of a fixed sksoft-
core Microblaze processors which share FSLs, faisit-o-
point communication links native to the FPGA fabrithe
model in Figure 1 implies the need for a globahared
memory, simultaneously accessible by all propagatio
elements for sharing variable information. Withautch
sharing, propagators cannot cooperate to jointlykema
progress toward a solution.
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Figure 2: Distributed memory ar chitecture.

The implementation of a low-latency, globally skthre
memory accessible by several computational deviest
practical on an FPGA fabric, due to limitations tre
number of read-write ports of internal memories.ur O
implementation emulates shared memory by makingofise
on-chip BlockRAM. The constraint store is partitgal and
distributed among the local memories associated eadich
soft core processor. Data sharing across partitio
boundaries is realized through interrupt-driven
communication along the FSL links.

Coherency and the Consolidator
Emulation of shared memory via distributed memosed
communication links imposes issues of coherencpcal

backtrack to the most recently stored configurationthe
configuration stack. It repeats the distributidgepswith a
new value. The process halts when all variable® een
bound to a value without encountering a constnaoiaition
(“solution”), or no satisfying selection can be abed
(“failure™).

Test Application

To evaluate our embedded finite domain constrashies,

we leveraged a hypothetical event graph from an
autonomous space mission planning algorithm [5]ur O
constraint model consists of enforcing temporatedence
constraints in order to derive a schedule of evamtthe
graph. We employ a simple clustering algorithm to
determine how to map propagators implementing
constraints extracted from the graph model ontordlitaze
processors. Measurements from the solver impleatient
executing on a Virtexll Pro Xilinx FPGA are provitlén

Mrable 1. Results indicate that a performance speeth

propagation increases as the number of processors i
increased.

Table 1: Speed-up in propagation for potential space

copies of shared data are cached on each process thsters ,ciontis  Seps ~ Frstsolfonticks — Custersze o i,

requiring the data. Coherency is maintained thinotwgo
steps. First, when a finite domain variable isatpd by a
remote processor, updates are sent to the ownowegsor.
Second, all updates are routed through a hardwaite u
called a consolidator, illustrated in Figure 3. eTh
consolidator is a comparator that acts as a cheuk for

all updates to the constraint store, and only ascepdates
which improve or tighten the currently stored bosirfdr
the variable.. Since propagation approaches atigolu
through bounds analysis of finite domain variables,
ordering between updates need not be maintained.
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Figure 3: Consolidator

Distribution and Backtrack

When propagation stalls due to lack of new infororain

the constraint store, the solver must implement a
distribution step.  Distribution requires global rivar
synchronization among all processors. To facéditgiobal
synchronization, commands are broadcast to allgssuars.
Command processing was modeled and implemented as
distributed set of finite state machines, which seathe
collection and sharing of state information withmaster
node. Distribution causes all nodes to push tloeal state
into a local configuration stack. The master node

application
prop Zdistrh. Prop
1 310209 =] FAILS 50451 1.00
2 159608 a7 2632804 34/34/33 1.94
3 1095971 43 1668505 2B/26/26/23 2.82
4 55914 5} 2360598 26/23126/26 361

The solver failed to converge in the single-proocessase,
due to lack of sufficient space in the local couofation

stack. The number of processors involved in thablem,

together with the number of variables in the caistrstore
dictates the storage requirements per configuratidaving

fewer nodes imposes a larger per-configurationager
requirement, and with a large number of distributsbeps,
the solver exhausts the available stack space.

Conclusion

Online constraint satisfaction potentially opens door to a
variety of introspective dynamic optimizations toledded
systems. We have developed an approach for enrgeddi
finite domain constraint solver on an FPGA, using a
network of soft-core processors, distributed meewand
point-to-point communication.
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