
Embedding Constraint Satisfaction using Parallel Soft-Core
Processors on FPGAs

Prasad Subramanian, Brandon Eames
Department of Electrical and Computer Engineering

Utah State University, Logan, Utah – 84322
prasad.subramanian@aggiemail.usu.edu, beames@engineering.usu.edu

Introduction1
Constraint satisfaction and optimization techniques are
commonly employed in scheduling problems, industrial
manufacturing and automation processes, borrowing
concepts from Operations Research (OR) and Artificial
Intelligence (AI). Constraint satisfaction has also been
applied in the design, synthesis and optimization of
embedded systems. A problem particularly suited to
constraint satisfaction is static scheduling and resource
allocation, subject to end-to-end timing and resource
constraints. Typical applications of constraint satisfaction
involve the design-time specification of both the problem
and non-functional requirements as constraints, which are
provided to a solver program to search for an optimal or
near-optimal solution.

In recent years a few examples of applying constraint
satisfaction at runtime have emerged for supporting
dynamic system adaptation and reconfiguration. The
runtime selection between various web services and
components based on user-specified Quality of Service
(QoS) requirements has been modeled as a constraint
satisfaction problem [1]. Constraint satisfaction has been
used to realize an on-board paper path controller of a digital
printer [2].

In this work, we address the development of an embedded
finite domain constraint solver targeting an FPGA.
Constraint solvers are concurrent in nature, and lend
themselves to parallel implementation. We exploit the
spatial parallelism offered by COTS FPGA architectures
via the instantiation of multiple soft-core processors, which
collectively implement the constraint solver. Soft-core
processors facilitate the development of flexible software-
based algorithms for implementing individual constraints.
The multi-core architecture realized on the FPGA facilitates
tight inter-core synchronization required when solving
constraints in parallel.

Overview of Constraint Satisfaction
A finite domain constraint satisfaction problem (CSP)
consists of set of variables x, as well as a set of basic
constraints. Each variable is restricted to a domain of finite
cardinality, typically consisting of a set of integer values.
The basic constraints represent relations between variables.
A solution to the CSP consists of a binding of values to the
variables in x, such that all the basic constraints are
satisfied. A solver is a program which takes a set of
variables and basic constraints and searches for a solution

to the CSP. A solver can be configured to find a single
solution, all solutions, or alternatively, to find the best
solution, where “best” is characterized by a user-specified
cost function.

Figure 1 illustrates the internal architecture of a finite
domain constraint solver [4]. A solver is developed around
the concept of a central repository called the constraint
store. The constraint store contains information on each
variable and its domain in the CSP. Computational entities
called propagators implement the basic constraints in the
problem, by reading domain information on their
constituent variables from the constraint store, and
attempting to shrink the domains through mathematics and
deduction. Each propagator executes as a separate thread.
The bounds analysis implemented via propagation is
insufficient to converge to a solution. Therefore,
propagation is followed by a step called distribution, which
conveys new information to the constraint store by means
of variable assignment. At each distribution step, the solver
saves the state of the constraint store, in case the new
information added leads to a contradiction, which would
necessitate backtracking. Through alternating between
propagation and distribution, the constraint solver can
exhaustively traverse the solution space and determine a
solution to the CSP.

Figure 1: Constraint store.

Architecture of a Constraint Solver
Figure 2 represents the architecture employed for realizing
an FPGA-based finite domain constraint solver. FPGAs
lend themselves to spatial parallelism, offering large
numbers of distributed memories and the ability to create
numerous parallel processing elements. Current approaches
to parallelization of finite domain constraint search focus on
the partitioning of the CSP based on distribution steps [3].
Our approach seeks to exploit the inherent parallelism in
the propagation step of the FD solver. Our architecture
targets a Xilinx FPGA, and consists of a fixed set of soft-
core Microblaze processors which share FSLs, fast point-to-
point communication links native to the FPGA fabric. The
model in Figure 1 implies the need for a globally shared
memory, simultaneously accessible by all propagation
elements for sharing variable information. Without such
sharing, propagators cannot cooperate to jointly make
progress toward a solution.

Figure 2: Distributed memory architecture.

The implementation of a low-latency, globally shared
memory accessible by several computational devices is not
practical on an FPGA fabric, due to limitations on the
number of read-write ports of internal memories. Our
implementation emulates shared memory by making use of
on-chip BlockRAM. The constraint store is partitioned and
distributed among the local memories associated with each
soft core processor. Data sharing across partition
boundaries is realized through interrupt-driven
communication along the FSL links.

Coherency and the Consolidator
Emulation of shared memory via distributed memories and
communication links imposes issues of coherency. Local
copies of shared data are cached on each processor
requiring the data. Coherency is maintained through two
steps. First, when a finite domain variable is updated by a
remote processor, updates are sent to the owning processor.
Second, all updates are routed through a hardware unit
called a consolidator, illustrated in Figure 3. The
consolidator is a comparator that acts as a check point for
all updates to the constraint store, and only accepts updates
which improve or tighten the currently stored bounds for
the variable.. Since propagation approaches a solution
through bounds analysis of finite domain variables,
ordering between updates need not be maintained.

Figure 3: Consolidator

Distribution and Backtrack
When propagation stalls due to lack of new information in
the constraint store, the solver must implement a
distribution step. Distribution requires global barrier
synchronization among all processors. To facilitate global
synchronization, commands are broadcast to all processors.
Command processing was modeled and implemented as a
distributed set of finite state machines, which cause the
collection and sharing of state information with a master
node. Distribution causes all nodes to push their local state
into a local configuration stack. The master node
broadcasts a command targeting a single node in the
network, to constrain a variable to a value. Once this is
done, propagation proceeds. If a node determines that a
constraint violation has occurred, a notification message is
sent to the master node, which instructs all nodes to halt and

backtrack to the most recently stored configuration on the
configuration stack. It repeats the distribution step with a
new value. The process halts when all variables have been
bound to a value without encountering a constraint violation
(“solution”), or no satisfying selection can be obtained
(“failure”).

Test Application
To evaluate our embedded finite domain constraint solver,
we leveraged a hypothetical event graph from an
autonomous space mission planning algorithm [5]. Our
constraint model consists of enforcing temporal precedence
constraints in order to derive a schedule of events in the
graph. We employ a simple clustering algorithm to
determine how to map propagators implementing
constraints extracted from the graph model onto Microblaze
processors. Measurements from the solver implementation
executing on a VirtexII Pro Xilinx FPGA are provided in
Table 1. Results indicate that a performance speed-up in
propagation increases as the number of processors is
increased.

Table 1: Speed-up in propagation for potential space
application

The solver failed to converge in the single-processor case,
due to lack of sufficient space in the local configuration
stack. The number of processors involved in the problem,
together with the number of variables in the constraint store
dictates the storage requirements per configuration. Having
fewer nodes imposes a larger per-configuration storage
requirement, and with a large number of distribution steps,
the solver exhausts the available stack space.

Conclusion
Online constraint satisfaction potentially opens the door to a
variety of introspective dynamic optimizations to embedded
systems. We have developed an approach for embedding a
finite domain constraint solver on an FPGA, using a
network of soft-core processors, distributed memories and
point-to-point communication.

References
[1] M. Lin, J. Xie, H. Guo, and H. Wang, “Solving QoS-driven

web service dynamic composition as fuzzy constraint
satisfaction,” in Proc. 2005 IEEE Intl. Conf. e-Technology,
e-Commerce and e-Service. Wash., DC, 2005.

[2] M.Fromherz, “Constraint-based scheduling,” American
Control Conference, vol. 4, pp. 3231–3244, 2001.

[3] Schulte, C. “Parallel Search Made Simple”, Tech Rprt
TRA9/00, Nat. Univ. Singapore, Sept. 2000.

[4] M. Henz and T. M¨uller, “An overview of finite domain
constraint programming,” in Proc. 5th Conf. Assoc. of Asia-
Pacific Operational Research Societies, 2000.

[5] A. Dasu and J. Phillips, “Deriving FPGA based custom soft-
core microprocessors for mission planning algorithms,” in
21st AIAA/USU Conf. Small Satellites. Aug, 2007.

