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Introduction1 
Constraint satisfaction and optimization techniques are 
commonly employed in scheduling problems, industrial 
manufacturing and automation processes, borrowing 
concepts from Operations Research (OR) and Artificial 
Intelligence (AI). Constraint satisfaction has also been 
applied in the design, synthesis and optimization of 
embedded systems.  A problem particularly suited to 
constraint satisfaction is static scheduling and resource 
allocation, subject to end-to-end timing and resource 
constraints.  Typical applications of constraint satisfaction 
involve the design-time specification of both the problem 
and non-functional requirements as constraints, which are 
provided to a solver program to search for an optimal or 
near-optimal solution.   

In recent years a few examples of applying constraint 
satisfaction at runtime have emerged for supporting 
dynamic system adaptation and reconfiguration.  The 
runtime selection between various web services and 
components based on user-specified Quality of Service 
(QoS) requirements has been modeled as a constraint 
satisfaction problem [1].  Constraint satisfaction has been 
used to realize an on-board paper path controller of a digital 
printer [2].   

In this work, we address the development of an embedded 
finite domain constraint solver targeting an FPGA.  
Constraint solvers are concurrent in nature, and lend 
themselves to parallel implementation.  We exploit the 
spatial parallelism offered by COTS FPGA architectures 
via the instantiation of multiple soft-core processors, which 
collectively implement the constraint solver.  Soft-core 
processors facilitate the development of flexible software-
based algorithms for implementing individual constraints.  
The multi-core architecture realized on the FPGA facilitates 
tight inter-core synchronization required when solving 
constraints in parallel.   

Overview of Constraint Satisfaction  
A finite domain constraint satisfaction problem (CSP) 
consists of set of variables x, as well as a set of basic 
constraints.   Each variable is restricted to a domain of finite 
cardinality, typically consisting of a set of integer values.  
The basic constraints represent relations between variables.  
A solution to the CSP consists of a binding of values to the 
variables in x, such that all the basic constraints are 
satisfied.  A solver is a program which takes a set of 
variables and basic constraints and searches for a solution 
                                                 
 

to the CSP.  A solver can be configured to find a single 
solution, all solutions, or alternatively, to find the best 
solution, where “best” is characterized by a user-specified 
cost function.   

Figure 1 illustrates the internal architecture of a finite 
domain constraint solver [4].  A solver is developed around 
the concept of a central repository called the constraint 
store.  The constraint store contains information on each 
variable and its domain in the CSP.  Computational entities 
called propagators implement the basic constraints in the 
problem, by reading domain information on their 
constituent variables from the constraint store, and 
attempting to shrink the domains through mathematics and 
deduction.  Each propagator executes as a separate thread.  
The bounds analysis implemented via propagation is 
insufficient to converge to a solution. Therefore, 
propagation is followed by a step called distribution, which 
conveys new information to the constraint store by means 
of variable assignment.  At each distribution step, the solver 
saves the state of the constraint store, in case the new 
information added leads to a contradiction, which would 
necessitate backtracking.  Through alternating between 
propagation and distribution, the constraint solver can 
exhaustively traverse the solution space and determine a 
solution to the CSP.   

 

Figure 1: Constraint store. 

Architecture of a Constraint Solver 
Figure 2 represents the architecture employed for realizing 
an FPGA-based finite domain constraint solver.  FPGAs 
lend themselves to spatial parallelism, offering large 
numbers of distributed memories and the ability to create 
numerous parallel processing elements.  Current approaches 
to parallelization of finite domain constraint search focus on 
the partitioning of the CSP based on distribution steps [3].  
Our approach seeks to exploit the inherent parallelism in 
the propagation step of the FD solver.  Our architecture 
targets a Xilinx FPGA, and consists of a fixed set of soft-
core Microblaze processors which share FSLs, fast point-to-
point communication links native to the FPGA fabric.  The 
model in Figure 1 implies the need for a globally shared 
memory, simultaneously accessible by all propagation 
elements for sharing variable information.  Without such 
sharing, propagators cannot cooperate to jointly make 
progress toward a solution.   



 

Figure 2: Distributed memory architecture. 

The implementation of a low-latency, globally shared 
memory accessible by several computational devices is not 
practical on an FPGA fabric, due to limitations on the 
number of read-write ports of internal memories.  Our 
implementation emulates shared memory by making use of 
on-chip BlockRAM.  The constraint store is partitioned and 
distributed among the local memories associated with each 
soft core processor.  Data sharing across partition 
boundaries is realized through interrupt-driven 
communication along the FSL links.   

Coherency and the Consolidator  
Emulation of shared memory via distributed memories and 
communication links imposes issues of coherency.  Local 
copies of shared data are cached on each processor 
requiring the data.  Coherency is maintained through two 
steps.  First, when a finite domain variable is updated by a 
remote processor, updates are sent to the owning processor.  
Second, all updates are routed through a hardware unit 
called a consolidator, illustrated in Figure 3.  The 
consolidator is a comparator that acts as a check point for 
all updates to the constraint store, and only accepts updates 
which improve or tighten the currently stored bounds for 
the variable..  Since propagation approaches a solution 
through bounds analysis of finite domain variables, 
ordering between updates need not be maintained.   

 

Figure 3: Consolidator 

Distribution and Backtrack 
When propagation stalls due to lack of new information in 
the constraint store, the solver must implement a 
distribution step.  Distribution requires global barrier 
synchronization among all processors.  To facilitate global 
synchronization, commands are broadcast to all processors.  
Command processing was modeled and implemented as a 
distributed set of finite state machines, which cause the 
collection and sharing of state information with a master 
node.  Distribution causes all nodes to push their local state 
into a local configuration stack.  The master node 
broadcasts a command targeting a single node in the 
network, to constrain a variable to a value.  Once this is 
done, propagation proceeds.  If a node determines that a 
constraint violation has occurred, a notification message is 
sent to the master node, which instructs all nodes to halt and 

backtrack to the most recently stored configuration on the 
configuration stack.  It repeats the distribution step with a 
new value.  The process halts when all variables have been 
bound to a value without encountering a constraint violation 
(“solution”), or no satisfying selection can be obtained 
(“failure”). 

Test Application 
To evaluate our embedded finite domain constraint solver, 
we leveraged a hypothetical event graph from an 
autonomous space mission planning algorithm [5].  Our 
constraint model consists of enforcing temporal precedence 
constraints in order to derive a schedule of events in the 
graph.  We employ a simple clustering algorithm to 
determine how to map propagators implementing 
constraints extracted from the graph model onto Microblaze 
processors.  Measurements from the solver implementation 
executing on a VirtexII Pro Xilinx FPGA are provided in 
Table 1.  Results indicate that a performance speed-up in 
propagation increases as the number of processors is 
increased. 

Table 1: Speed-up in propagation for potential space 
application 

 

The solver failed to converge in the single-processor case, 
due to lack of sufficient space in the local configuration 
stack.  The number of processors involved in the problem, 
together with the number of variables in the constraint store 
dictates the storage requirements per configuration.  Having 
fewer nodes imposes a larger per-configuration storage 
requirement, and with a large number of distribution steps, 
the solver exhausts the available stack space.   

Conclusion 
Online constraint satisfaction potentially opens the door to a 
variety of introspective dynamic optimizations to embedded 
systems.  We have developed an approach for embedding a 
finite domain constraint solver on an FPGA, using a 
network of soft-core processors, distributed memories and 
point-to-point communication.   
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