
Leveling the Field for Multicore
Open Systems Architectures

Markus Levy
President, EEMBC

President, Multicore Association

Analyzing the Multicore Ecosystem

• Embedded Microprocessor Benchmark
Consortium® (EEMBC)

• Industry benchmarks since 1997
• Tool for evaluating embedded processors,

compilers, systems
• MultiBench for shredding multicore

processors

Enabling the Multicore Ecosystem

• Initial engagement began in May 2005
• Industry-wide participation
• Current efforts

• Communications APIs
• Hypervisors
• Multicore Programming Practices
• Resource Management

Multicore Issues to Solve
• Concurrent programming
• Communications, synchronization, resource

management between/among cores
• Performance analysis
• Debugging
• Distributed power management
• OS virtualization
• Modeling and simulation
• Load balancing
• Algorithm partitioning

Multicore Benchmarking Rules

• Do not rely on a single answer
• Match your application requirements

– Small or large data sets
– Few or many threads
– Dependencies
– OS overhead

Benchmarking Multicore –
What’s Important?

• Measuring scalability
• Memory and I/O bandwidth
• Inter-core communications
• OS scheduling support
• Efficiency of synchronization
• System-level functionality

EEMBC Multicore Strategy
• Evaluation and future development of

scalable SMP architectures
– Includes multicore and manycore

• Measure impact of parallelization and
scalability across both data processing
and computationally-intensive tasks

Some Results

Quad Core

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 8

Number of concurrent streams

S
pe

ed
up

64M-check-reassembly 64M-cmykw2 64M-rotatew2 64M-tcp-mixed

Huge drop in performance
when oversubscribed Nice scaling on networking

only workloads

Some benchmarks plateau
earlier then expected

MultiBench Results

Two Processor System Utilizing Single
Memory Controller

Quad
Core

Processor 1

Quad
Core

Processor 2

DDR2
Interface

Processors 1 and 2 must always arbitrate for memory via
their front side bus connection through the North Bridge.

North
Bridge

Intel Front Side Bus

Dual Quads vs. Single Quad

1. Find max values for each workload
2. Ratio of all scores

0

0.5

1

1.5

2

2.5

64
M

-c
he

ck
-r

ea
ss

em
bl

y

64
M

-c
he

ck
-r

ea
ss

em
bl

y-
tc

p

64
M

-c
he

ck
-r

ea
ss

em
bl

y-
tc

p-
cm

yk
w

2-
ro

ta
te

w
2

64
M

-c
he

ck
-r

ea
ss

em
bl

y-
tc

p-
h2

64
w

2

64
M

-c
m

yk
w

2

64
M

-c
m

yk
w

2-
ro

ta
te

w
2

64
M

-r
ot

at
ew

2

64
M

-tc
p-

m
ix

ed

64
M

-x
26

4-
1w

or
ke

r

64
M

-x
26

4-
2w

or
ke

rs

64
M

-x
26

4-
4w

or
ke

rs

64
M

-x
26

4-
8w

or
ke

rs

ip
pk

tc
he

ck
-6

4M
-1

W
or

ke
r

ip
re

s-
72

M
1w

or
ke

r

ip
re

s-
72

M
2w

or
ke

r

m
d5

-3
2M

1w
or

ke
r

m
d5

-3
2M

2w
or

ke
r

m
d5

-3
2M

4w
or

ke
r

rg
bc

m
yk

-5
x1

2M
1w

or
ke

rs

rg
bc

m
yk

-5
x1

2M
2w

or
ke

rs

rg
bc

m
yk

-5
x1

2M
4w

or
ke

rs

rg
bc

m
yk

-5
x1

2M
8w

or
ke

rs

ro
ta

te
-1

6x
4M

s1
w

1

ro
ta

te
-1

6x
4M

s1
w

2

ro
ta

te
-1

6x
4M

s1
w

4

ro
ta

te
-1

6x
4M

s1
w

8

ro
ta

te
-1

6x
4M

s3
2w

1

ro
ta

te
-1

6x
4M

s3
2w

2

ro
ta

te
-1

6x
4M

s3
2w

4

ro
ta

te
-1

6x
4M

s3
2w

8

ro
ta

te
-1

6x
4M

s4
w

1

ro
ta

te
-1

6x
4M

s4
w

2

ro
ta

te
-1

6x
4M

s4
w

4

ro
ta

te
-1

6x
4M

s4
w

8

ro
ta

te
-3

4k
X5

12
-9

0d
eg

ro
ta

te
-c

ol
or

-4
M

-9
0d

eg

No Workloads
Yield 2x Scaling

Two Processor System Utilizing
Dual Memory Controllers

Quad
Core

Processor 1

Quad
Core

Processor 2

LinkDDR2
Interface

DDR2
Interface

Direct Access
Shared Access

Doubly Shared Access

Two Processor System Utilizing
Single Memory Controller

Quad
Core

Processor 1

Quad
Core

Processor 2

Link
DDR2

Interface

• Processor 1 must always access memory by traversing link
to Processor 2
• Requires arbitration to access Processor 2’s memory

• Processor 2 always has prioritized access to this memory
since it is directly attached.

• Affinity can help performance

Dual Quad Cores –
Single Memory Controller

Dual Quad Cores –
Dual Memory Controllers

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 6 8 12 16 20

64M-cmykw2
64M-cmykw2-rotatew2
64M-rotatew2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 6 8 12 16 20

64M-cmykw2
64M-cmykw2-rotatew2
64M-rotatew2

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9

rotate-color-4M-90deg (DS)
rotate-color-4M-90deg (DD)

•Rotation by multiple workers cooperating to process a single image.
•Each worker thread acquires slices and writes them to the output
buffer.

•Potential bottlenecks related to memory interfaces and synchronization
between worker threads.

Dual Quad Cores –
Single Memory Controller

Dual Quad Cores –
Dual Memory Controllers0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

rotate-16x4Ms32w1
rotate-16x4Ms32w2
rotate-16x4Ms32w4
rotate-16x4Ms32w8

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

rotate-16x4Ms32w1
rotate-16x4Ms32w2
rotate-16x4Ms32w4
rotate-16x4Ms32w8

The Multicore Association Roadmap

Communications
- MCAPI: ultra-light weight

Resource Management
- Memory management
- Basic synchronization
- Resource registration
- Resource partitioning

Task Management
-Task scheduling

The Four MCA Pillars

Virtualization (or OS)

Communication Resource
Management

Task
Management

Debug

Multicore System
Adopted stdsAdopted stds

MCA Foundation APIsMCA Foundation APIs

Value Added Functions
• Languages

• Programming Models
• Design Environments

• Application Generators
• Benchmarks

Services
•Load Balancing

•System Mgt.
•Power Mgt.
•Reliability

•Quality of Service

Why Virtualize?

• Hardware consolidation
• Migration and hosting of legacy applications
• Resource management and balancing
• Faster provisioning
• Fault tolerance

Virtualized Multicore System

Fractional CPU assignment for background tasks such as firmware
update/system health monitor/power management

Benchmarking involves many system-level elements

HARDWARE PERIPHERALS

ARM CORE # 1

TRANGO # 1

ARM CORE # 2

TRANGO # 2

ARM CORE # 3

TRANGO # 3

ARM CORE # 4

TRANGO # 4

Fi
rm

w
ar

e
U

pd
at

e

AppApp App AppAppApp App App

SM P
SM P RTOS

AppApp App App

Pr
op

ri
et

ar
y

Ap
pl

ic
at

io
n

VPU A VPU B VPU C VPU D VPU E VPU F VPU G

VPU GVPU FVPU A VPU B VPU C VPU D VPU E

CORE #2 CORE #3 CORE #4 CORE #1

EEMBC Hypermark
Important Metrics

• Overall performance overhead of a
hypervisor, i.e. CPU loading

• Static footprint (code and data size)
• Jitter
• Interrupt latency
• Comparison to native performance

20

Multicore Programming Practices
(MPP)

• Long term
– Continue research into languages, methodologies, etc

• Short term
– How today’s embedded C/C++ code may be written to be

“multicore ready”

• Influence of a group of like-minded methodology experts
to ensure completeness, usefulness and industry-wide
compatibility

• Creation of a standard “best practices” guide through a
recognized, neutral industry body
– Based on capturing current best practices

MPP Scope & Approach

21

Sequential
C/C++

Architecture 1
e.g. Shared

Memory

Architecture 2
e.g. Programmer
Managed Memory

Architecture 3
e.g. Message

Passing

• Focus on existing C/C++
without extensions, targeting
current architectures

• Draw up framework of
common pitfalls when
transitioning from serial to
parallel

• Consider solutions or
avoidance tactics

• Analyze performance of
solution

Summary

• Performance analysis highlights benefits
and pitfalls

• EEMBC licensing and membership

• Portability prevents entrapment
• Multicore Association standards and

working groups

	Leveling the Field for Multicore Open Systems Architectures
	Analyzing the Multicore Ecosystem
	Enabling the Multicore Ecosystem
	Multicore Issues to Solve
	Multicore Benchmarking Rules
	Benchmarking Multicore – What’s Important?
	EEMBC Multicore Strategy
	Some Results
	Two Processor System Utilizing Single Memory Controller
	Dual Quads vs. Single Quad
	Two Processor System Utilizing Dual Memory Controllers
	Two Processor System Utilizing Single Memory Controller
	Slide Number 13
	Slide Number 14
	Slide Number 15
	The Multicore Association Roadmap
	Why Virtualize?
	Virtualized Multicore System
	EEMBC Hypermark�Important Metrics
	Multicore Programming Practices�(MPP)
	MPP Scope & Approach
	Summary

