
Application Implementation on the Cell B.E. Processor: Techniques Employed
John Freeman (freeman@brsc.com), Diane Brassaw (brassaw@brsc.com), Rich Besler (besler@brsc.com), Brian

Few (few@brsc.com), Shelby Davis (davis@brsc.com), Ben Buley (buley@brsc.com) .
Black River Systems Company Inc., 162 Genesee St. Utica NY 13501

Summary1
Development of real-time and non real-time algorithms on a
Cell Broadband Engine™ (Cell B.E.) is challenging. The
multi-core architecture of the Cell B.E. combined with
small memory constraints and limited instruction set on the
vector engines create a development environment with an
interesting set of problems. Black River Systems has
ported several algorithms and has developed optimized
assembly language functions on the Cell B.E. The
objective of this paper is to discuss the techniques we have
employed to successfully take advantage of the capabilities
of the Cell B.E. processor.

Motivation2
The Cell B.E. processor is a unique and interesting
heterogeneous processing architecture with impressive
single precision floating point performance of over 200
GFLOPS.

Figure 1: Cell B.E. Architecture

Figure 1 shows the Cell B.E. architecture consisting of a 3.2
GHz Power Processing Element (PPE), 8 enhanced
independent Synergistic Processing Elements (SPEs), a
high speed Element Interconnect Bus (EIB), high-speed I/O
options, and high speed XDR memory. Coupling this
performance with the availability of a low cost ($400)
development environment in the form of the PlayStation 3
(PS-3) and the availability of higher density platforms in
the Mercury 1U server and IBM Blade Center makes the
Cell B.E. a very attractive target for compute intensive
applications.

Introduction to Programming the Cell
Programming the Cell B.E. is not a trivial process. The first
challenge is to figure how to make the algorithm (including
data) fit in the small 256K SPE local store.

• When mapping an algorithm you must identify
data independent algorithm components and
distribute these components across multiple SPE’s.

• If you have large FFT’s you will want to use the
mega-stage/transpose/DMA technique.

• Strip-mine long vectors to/from XDR.

• Use the PPE for shared computation and process
management.

The second challenge is to make the algorithm run fast.
• Overlap computation on SPE and data transfer

between SPE and XDR DRAM.
• Utilize vector instructions on the PPE and SPE.
• Make use of the extensive register set on the SPE
• Unroll loops to avoid stalls due to operand

unavailability
• Analyze inner loop execution. A useful tool to use

is Assembly Visualizer (asmVis) provided by IBM
as shown in Figure 2 .

Figure 2: Loop Performance in IBM asmVis

• Use interrupts or mailboxes from SPE to PPE to
signal operation completion

The third step is to connect the functional components to
provide a cohesive solution. Finally balance the loading on
each SPE such that SPE idle time is minimized.

Techniques Employed
Below is a brief discussion of the techniques employed in
order to successfully follow the programming approach
described and take advantage of the capabilities of the Cell
B.E. processor. This includes a low-cost development
environment, SPE assembly programming, techniques for
loop unrolling, parallel implementations, and performance
metrics.

Development Environment
The Sony PlayStation 3 (PS-3) has a 3.2 GHz Cell B.E.
Chip with 6 SPEs, 256MB XDR RAM, 40 GB Hard drive,
and Gigabit Ethernet and USB connectivity for ~$400.
Installed with Fedora 7 Linux, IBM SDK and using GNU
GCC and associated debuggers, it provides a low-cost
development station for software development. A rebuild
of the Linux kernel to allow networking options, trim
unneeded sections, and select different memory
performance options resulted in a 2 week initial
software/hardware setup and an additional ½ day applied

mailto:freeman@brsc.com
mailto:brassaw@brsc.com
mailto:besler@brsc.com
mailto:few@brsc.com
mailto:davis@brsc.com
mailto:buley@brsc.com

time for additional systems. The migration of applications
developed on the PS-3 to other Cell B.E. platforms is
seamless with no performance differences noted in the SPE
code.

SPE Assembly Programming
The code generated by the C compiler is often suboptimal
for the inner loop of a program. When it is important to get
every single cycle of performance out of an algorithm,
coding the inner loop in assembly is the only way. Since all
of the assembly commands on the SPEs are vectorized, it
provides an incentive for the developer to think hard about
how the implementation is structured, and gives them an
opportunity to use SIMD techniques as often as possible.
Knowledge of the IBM SDK C intrinsics offers a good step
into the more opaque assembly programming environment,
but all of the higher level language features like types and
memory protection are no longer available to the
programmer. On the other hand, the compiler is not doing
any transformations to your code, so performance
bottlenecks are easier to diagnose.

Techniques for Loop Unrolling
One approach is to use text processing in Java. Using this
approach, we are able to specify 'computational blocks'
within an assembly implementation of an inner loop and
then eliminate stalls by unrolling the loop. This template
can be used to unroll a loop as many times as is necessary
to eliminate all of the stalls generated by the
interdependence of the assembly instructions in the routine.
In practice, a loop will rarely need to be unrolled more than
six times, as this is the longest computational latency of any
of the single precision operations in the SPE instruction set.

A second approach is to use C++ Template Meta
Programming to generate semi-automatic loop unrolling.
This use of templates allows the compiler to determine the
optimal number of registers in use at once. In addition,
because the loops were programmatically unrolled with
template recursion, all values derived from a combination
of constants and loop counts (e.g. address offsets and
logical bit masks) were computed at compile time reducing
the total number of computations per loop. Since there were
no inner loops, the dependency of the data was much easier
for the compiler to see therefore allowing the compiler to
make better optimizations and concurrently process
multiple loop(original) iterations at once. This type of
optimization increases the execution speed but may lead to
a very large execution image making it infeasible to target
to the Cell local store.

Parallel Implementation
Execution using POSIX threading is used to manage each
algorithm component with various parallel implementation
techniques such as a fixed function pipeline and a queue
managed use of the SPEs as an offload engine. In the fixed
function pipeline method shown in Figure 3, SPE functions
are assigned a PPE proxy thread, simplifying the main
program to a scheduler. Queue managed use of SPEs or
load balancing makes use of the next available SPE for the
next function that needs to be done as shown in Figure 4.

Figure 3: Fixed Function Pipeline

Figure 4: Load Balancing

Performance Metrics
The PPE time-base registers are used to collect event
stamps at the start and end of each threads execution and
analyzed graphically to assess load balance, latency, idle
time, and to optimize the Cell execution as a whole. Since a
thread is used to control a SPE, then the SPE execution time
and execution placement is also conveyed as shown in
Figure 5. Each line represents a thread, some of them
running SPE code, some only PPE code. Using the timing
metrics and the profiling GUI tool, the developer can
analyze where there are bottlenecks, where the code needs
further optimization, and if the SPE distribution needs to be
changed or more SPEs added.

Figure 5: Black River Profiling Tool

Conclusion
Using the techniques described has enabled us to obtain
impressive performance on the Cell B.E. processor. For
example, one application that originally ran on a 64 node
PPC7410 500 MHz system was reduced to running on a 1U
Cell server. A 10x decrease in deployed system cost and an
increase in system performance was achieved. When paired
with the correct applications the Cell B.E. is a very capable
processor which can provide significant performance gains
over other current processor technologies. Programming for
the Cell B.E., while challenging, has proven no more
difficult than traditional embedded multi-processor systems.
Dealing with the unique features of the Cell B.E. presents
an appreciable learning curve but results in performance
nearly matching the theoretical peak.

	Application Implementation on the Cell B.E. Processor: Techniques Employed
	Development Environment
	Parallel Implementation
	Performance Metrics

