
An Ethernet-Accessible Control Infrastructure For Rapid FPGA 
Development 

Andrew Heckerling, Thomas Anderson, Huy Nguyen, Greg Price, Sara Siegal, John Thomas 
MIT Lincoln Laboratory, Lexington, MA 02420   

{heckerl, toma, hnguyen, gprice, ssiegal, jthomas}@ll.mit.edu 
 

Introduction1

Field Programmable Gate Array (FPGA) technology is 
widely used in many application areas such as intensive 
numerical processing, sophisticated control, and high-speed 
IO interfacing.  One key factor for success in such vast 
diverse application space is the flexibility to customize 
(configure) the on-chip logic fabric and embedded 
specialized silicon macros to produce designs that are 
streamlined and highly integrated.  This “flexibility”, on the 
other hand, also means a minimally-supported development 
environment, which makes application development and 
debugging more difficult.  An analogy is a PC board with no 
operating system or BIOS. The lack of a minimum 
standardized control infrastructure on the FPGA is also a 
huge barrier for meaningful interaction with the outside 
world.  As a result, input-output and control structures for 
FPGAs are frequently created from scratch for each project. 

This paper addresses the above limitations with a computer-
accessible control structure on the FPGA. This small-
footprint control infrastructure provides the developer with 
a foundation and scaffolding to quickly build up an 
application. Through Ethernet, external software can 
observe and control internal states of the application 
function core being developed. The infrastructure is 
essentially a container for housing the application-specific 
intellectual property cores (IPs). 

The container has enough functionality to serve as a 
computer-FPGA control interface for a real-time FPGA-
based processor system. Its Gigabit Ethernet interface and 
remote-DMA capability also make it a reasonable platform 
for hosting medium-grade computer–FPGA co-processing.  

 

Application IP Container 
The FPGA IP container, highlighted in Figure 1, is 
accessible through software calls from the computer. The 
software library allows the application software on the 
computer  to request reads and writes to the FPGA address 
space. The library handles (behind the scenes) the details of 
formatting one or more request GigE packets and 
interpreting the returned results, abstracting the process to 
simple remote-DMA calls.  

                                                 
1 This work is sponsored by the United States Air Force, under Air 
Force Contract FA8721-05-C-0002.  Opinions, interpretations, 
conclusions and recommendations are those of the author and are not 
necessarily endorsed by the United States Air Force. 
 

 

RDMA library 

Debug 
Utility 

FPGA Board

 
RAM 

Flash 

Computer

Functio

GigE

Real-time 
Application 

C 

Status 

 

“Container”

UDP 
controller 

Trigger
Mode

Function 
Core Status 

Mem Bus 

Real-time 
Application

C 
interface 

Figure 1: Container provides an open control interface from a 
computer to the application-specific function core(s) 

 

The container structure consists of four major FPGA 
components.  The first major component is a UDP 
controller, which implements the UDP protocol and decodes 
packets into DMA commands.  The second is the DMA 
controller, which executes DMA transactions on a 
Wishbone bus.  The third is the Wishbone bus itself, which 
is a simple interconnect between the DMA controller and a 
variety of registers and peripherals.  Finally, there are a 
number of Wishbone peripherals that are useful for FPGA 
development. 

 

UDP Controller 

The UDP controller receives packets from an Ethernet MAC 
and decodes properly addressed and formatted UDP packets 
into commands for the DMA controller.  Once the command 
has been executed by the DMA controller, the resulting 
status and data responses are re-packaged into UDP 
messages and reported back to the network address that 
made the request. 

UDP was chosen as a transport-layer protocol for efficiency 
reasons and because its stateless nature made it more 
suitable for implementation in digital logic than a more 
complicated protocol like TCP.  The command-response 
protocol implemented on top of UDP was designed for 
simple translation into commands for the DMA controller. 

 

DMA Controller 

The DMA controller receives commands to read or write a 
block of address space and translates them into the required 
master read or write cycles on the Wishbone bus.  The status 
of the completed read or write transaction and, in the case of 
a read, the resulting data is reported to the upstream 
controller that sent the command.  In our design, this is the 
UDP controller, but the DMA controller is not UDP-
specific.  Transaction size can range from a single four-byte 
word to 8 KB of data, and the DMA controller supports both 
constant-address and ascending-address reads and writes. 



WISHBONE Bus 

The WISHBONE SoC Interconnect Architecture is an open 
source, public domain bus architecture for System-on-Chip 
architectures.2 The WISHBONE specification, interconnect 
IP, and a variety of peripherals are freely available from the 
OpenCores web site. 

 
Figure 2: FPGA Control Infrastructure 

Our design uses a 32-bit implementation of the 
WISHBONE bus to tie together the DMA controller and a 
variety of peripherals, as shown in Figure 2.  Each 
peripheral uses a portion of the WISHBONE bus address 
space.  An “interconnect” module is responsible for partially 
decoding the address from every WISHBONE cycle and 
directing the transaction to the proper peripheral.  Our 
“interconnect” module is derived from one produced by the 
WISHBONE Builder3, but contains modifications to 
improve flexibility in attachment to peripherals and 
robustness in the case of peripheral failure. 

Peripherals 

A number of WISHBONE peripherals have been created in 
order to provide various memory-mapped functions.  Some 
of these peripherals are strictly on the FPGA.  For example, 
we have created a register file which can be written and read 
via the WISHBONE bus and provides general purpose 
control and status to other portions of the design.  A “port 
array” peripheral provides memory mapped FIFO ports, 
allowing a block of data to be streamed out of a FIFO 
interface, into processing logic, and back into another FIFO 
interface to be later read back by the DMA controller.  This 
has been very useful for testing streaming-type processing 
logic, which often expects data to arrive in a FIFO-like 
interface. 

A dual-port memory controller bridge has also been 
constructed to interface between the WISHBONE bus and a 
DDR2 controller created by the Xilinx Memory Interface 
Generator (MIG).  In addition to connecting the 
WISHBONE bus to the DDR2 controller, this bridge 
contains a second “passthrough” port, which allows data-
processing logic to interface to the bridge as it would have 
interfaced to the memory controller.  This design allows 
high-speed processing logic to share the memory with the 
                                                 
2 http://www.opencores.org/projects.cgi/web/wishbone/wishbone 
3 http://www.opencores.org/projects.cgi/web/wb_builder/overview 

lower-speed control and debugging logic.  In addition to 
DDR2 memory, FPGA block-RAM can also be connected 
to the Wishbone bus with minimal interface logic. 

Results 
Our controller infrastructure was implemented and tested on 
Virtex 5 110LXT and 50SXT FPGAs.  The software library 
has been tested under Windows XP/Cygwin and VxWorks. 

On the Virtex 5-50SXT, the following resources were used: 

LUTs FFs BRAM 
Kbytes 

Clock 
rate 

5941/32640 
(18%) 

10118/32640 
(20%) 

112.5 / 594 
(19%) 

125 
MHz 

 

The communication rate with the computer reached 13 
MB/s, the highest rate supported by our minimally-
optimized software library. It is estimated that the FPGA 
infrastructure can exceed this limit by a wide margin and 
reach Gigabit Ethernet speeds or higher. 

This control infrastructure was used as a computer-FPGA 
interface for a FPGA-based processor in MicroTCA 
platform, as shown in Figure 3.  The MicroTCA 
environment has a GigE hub connecting to all payload slots 
in the system via backplane high-speed connection. 

 

 

Single Board Computer (SBC) MicroTCA Chassis

H 
U 
B 

FPGA Boards

GigE 
(internal) 

External
Network

GigE 
(external

GigE Connection 

Figure 3: MicroTCA System 

Future Work 
Possible future work includes extending the container 
framework to a multi-chip environment as shown below in 
Figure 4. 

 
Figure 4: Multi-Chip Extension 

The container can also be further developed to support 
integration of FPGAs as co-processors in the PVTOL4 
framework. 

                                                 
4 H. Kim, N. Bliss, R. Haney, J. Kepner, S. Mohindra, S. Sacco, 
G. Schrader, E. Rutledge.  “PVTOL: A High-Level Signal Processing 
Library for Multicore Processors.”  High Performance Embedded 
Computing Workshop 2007.  Lexington, MA.  September 2007. 

 
GigE 

 

Software Core

FPGA Tile ASIC Tile 
Mem Datapath Test Test 

Core 
ConfigConfig


