

Performance and Energy Comparison of Electrical and Hybrid Photonic Networks for CMPs

Ankit Jain, Shoaib Kamil, Marghoob Mohiyuddin, John Shalf, John Kubiatowicz

UC Berkeley ParLab/LBNL

Introduction	 Motivation Contributions Baseline Architecture
Electrical Network	 Architecture Simulator Model
Hybrid Network	ArchitectureSimulatorModel
Studied Communications	Synthetic CommunicationReal Applications
Results	 Synthetic Results Application Results Process to Processor Mapping
Conclusions and Future Work	

Motivation

- Manycore: NoCs key to translating raw performance → sustained performance
- Electrical NoC performance/energy constrained by process technology
 - □ Also, every joule saved counts
- Photonic NoC promising
 - □ Enabled by recent advances in photonics & chip fabrication
 - Potentially high performance at low energy cost
 - But cannot do packet switching
- Use hybrid network
 - □ Small packets → electrical NoC
 - □ Large packets → optical NoC

Contributions

- Use both synthetic traces and real application traces to compare electrical vs. hybrid photonic networks
- Construct cycle-accurate simulators and compare with simple analytic models
- Programmability: How important is processto-processor mapping?

Baseline Architecture

- 64 small, homogenous cores on a CMP
- Cores ~1.5mm x 1.5mm
- 22nm process, 5GHz
- 3D Integrated CMOS
 - □ layer for processors, layers for memory
- We examine two interconnect architectures to compare performance & energy efficiency

	A
Introduction	 Motivation Contributions Baseline Architecture
Electrical Network	 Architecture Simulator Model
Hybrid Network	 Architecture Simulator Model
Studied Communications	Synthetic CommunicationReal Applications
Results	 Synthetic Results Application Results Process to Processor Mapping
Conclusions and Future Work	

Electrical NoC

- Bill Dally's CMesh topology
- Wormhole routed
- Virtual channels
- Single electrical layer with multiple memory layers

Electrical Simulator

A

Processor

- Ignore computation
- Communication divided into "phases" (SPMD-style)
 - Send and receive all messages in a phase as fast as possible

Router

- XY dimension order routing
- Express links on periphery
- Virtual channels & wormhole routing
- Credit based flow control
- \square 8 input ports \rightarrow 8x8 switch

Analytic Model for Electrical NoC

Time

Bandwidth-only model

Assume virtual channels + wormhole routing hide latency

 $T_{msg} = \frac{size_{msg}}{bandwidth}$

Energy

Each hop incurs a set amount of energy

□ Link crossing + Router traversal

□ Parameters from Dally et al, scaled via ITRS

$$E_{total} = \sum \left(|L_{msg}| \times E_{hop} \right)$$

Introduction	 Motivation Contributions Baseline Architecture
Electrical Network	 Architecture Simulator Model
Hybrid Network	ArchitectureSimulatorModel
Studied Communications	Synthetic CommunicationReal Applications
Results	 Synthetic Results Application Results Process to Processor Mapping
Conclusions and Future Work	

Hybrid NoC

- Mesh Topology
- "Electrical Control Network" (ECN) on Processor Plane
- Multiple optical networks on Photonic Plane
- Small setup messages on ECN and bulk data transfer on optical network

Deadlock in Hybrid NoC

- Blocking 4x4 switch
 - Only one path can be routed at a time through a switch
- Deadlock is a known issue in circuit switching. Avoid deadlock with:
 - Exponential backoff
 - Dimension order routing
 - Multiple optical networks
 - Results in more possible paths
 - Since photonic elements are quite small, this is doable

Hybrid Simulator

- 1:1 processor to electrical router mapping
 - Each electrical router buffers up to 8 path setup messages from its corresponding processor
 - Electrical router does not use virtual channels or wormhole routing (unnecessary and consume energy)
- Path setup packets are minimally sized: take one cycle to traverse between 2 routers
- Energy includes Electro-Opto-Electrical conversions at the endpoints
 - □ Most expensive operation energy-wise
 - □ Did not include off-chip laser energy cost

A

Analytic Model for Hybrid NoC

Time

Must account for latency of electrical network, bandwidth limits, and contention

$$T_{msg} = |L_{msg}| \times 2 \times latency_{electrical} + \frac{size_{msg}}{bandwidth_{optical}}$$

- □ For contention, serialize "most-used" link
 - Only one message can be sent along link at a time
 - Overall time is time to send all messages on busiest link

Energy

Each message incurs energy cost on electrical network, plus the costs on the photonic network

$$E_{total} = \sum_{i=1}^{n} (|L_{msg}| \times E_{electrical} + E_{PSEswitching} + T_{msg} \times E_{PSEactive} + E_{EOE} \times size_{msg})$$

Introduction	 Motivation Contributions Baseline Architecture
Electrical Network	 Architecture Simulator Model
Hybrid Network	ArchitectureSimulatorModel
Studied Communications	Synthetic Communication Real Applications
Results	 Synthetic Results Application Results Process to Processor Mapping
Conclusions and Future Work	

Synthetic Traces

- Random messages
- Nearest-Neighbor
- Bitreverse
- Tornado
- Look at both small & large messages

Real Applications

- From DOE/NERSC workloads
- Broken into multiple phases of communication
 - □ implicit barrier is assumed at the end of a communication phase

Introduction	 Motivation Contributions Baseline Architecture
Electrical Network	 Architecture Simulator Model
Hybrid Network	ArchitectureSimulatorModel
Studied Communications	Synthetic Communication Real Applications
Results	 Synthetic Results Application Results Process to Processor Mapping
Conclusions and Future Work	

Synthetic Trace Results

- For small messages, setup latency for the hybrid network makes it slower than electrical
- Hybrid network outperforms electrical-only on large messages, and uses far less energy in both cases

Application Performance

Application Energy

Process-Processor Mapping (1/2)

Process-Processor Mapping (2/2)

	A
Introduction	 Motivation Contributions Baseline Architecture
Electrical Network	ArchitectureSimulatorModel
Hybrid Network	ArchitectureSimulatorModel
Studied Communications	Synthetic CommunicationReal Applications
Results	 Synthetic Results Application Results Process to Processor Mapping
Conclusions and Future Work	

Conclusions

- Simple analytic models accurately predict both performance and energy consumption
- Hybrid NoC: Majority of energy due to Optical-to-Electrical and Electrical-to-Optical conv. (>94%).
- Hybrid NoC performs better for larger messages; energy consumption is much lower
- Process-to-processor mapping can significantly impact performance as well as energy consumption.
 - □ Finding the optimal mapping is not always of utmost importance— making sure not to use a 'bad' mapping is.
- Overall, hybrid photonic on-chip networks are promising

Future Work

- Non-blocking optical mesh interconnection network
- Account for data transfer onto chip
- More accurate full system simulators (for both performance and energy)
 - □ simulate FP operations & memory traffic
 - as photonic technologies are explored by materials/hardware designers, use input to revise/refine simulators
- Explore applications with less synchronous communication models
 - □ Not SPMD
 - Overlap of computation and communication

Acknowledgements

- Katherine Yelick (UC Berkeley ParLab & NERSC/LBNL)
- Assam Schacham, Luca Carloni and Dr. Keren Bergman (Columbia University)
 - Our exploration is based on their earlier work (see references)
- BeBOP Research Group (UC Berkeley Computer Science Dept)

References

- [1] Assaf Shacham, Keren Bergman, and Luca Carloni. On the Design of a Photonic Network-on-Chip. In Proceedings of the First International Symposium on Networks-on-Chip, 2007.
- [2] James Balfour, and William Dally. Design Tradeoffs for Tiled CMP On-Chip Networks. In Proceedings of the International Conference on Supercomputing, 2006.
- [3] Shoaib Kamil, Ali Pinar, Daniel Gunter, Michael Lijewski, Leonid Oliker, and John Shalf. Reconfigurable Hybrid Interconnection for Static and Dynamic Applications. In Proceedings of the ACM International Conference on Computing Frontiers, 2007.
- [4] Bergman et. al.. Topology Exploration for Photonic NoCs for Chip Multiprocessors. Unpublished to date.
- [5] Cactus Homepage. http://www.cactuscode.org, 2004.
- [6] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size Scaling of Turbulent Transport in Magnetically Confined Plasmas. Phys. Rev. Lett., 88, 2002.
- [7] Julian Borrill, Jonathan Carter, Leonid Oliker, David Skinner, and R. Biswas. Integrated performance monitoring of a cosmology application on leading hec platforms. In Proceedings of the International Conference on Parallel Processing (ICPP), 2005.
- [8] A. Canning, L.W. Wang, A. Williamson, and A. Zunger. Parallel Empirical Pseudopotential Electronic Structure Calculations for Million Atom Systems. J. Comput. Phys., 160:29, 2000.
- [9] Xiaoye S. Li and James W. Demmel. SuperLU-dist: A Scalable Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans. Mathematical Software, 29(2):110140, June 2003.
- [10] J. Qiang, M. Furman, and R. Ryne. A Parallel Particle-in-Cell Model for Beam-Beam Interactions in High Energy Ring Colliders. J. Comp. Phys., 198, 2004.
- [11] IPM Homepage. <u>http://www.nersc.gov/projects/ipm</u>, 2005

Backup Slides

Analytic Model

Three Models

Bandwidth Model

- For electrical network: assume virtual channels hide latency
- Bandwidth + Latency Model

Bandwidth + Latency + Contention Model ELECTRICAL HYBRID

$$T_{msg} = \frac{size_{msg}}{bandwidth} \qquad T_{msg} = |L_{msg}| \times 2 \times latency_{electrical} + \frac{size_{msg}}{bandwidth_{optical}}$$
$$E_{total} = \sum (|L_{msg}| \times E_{hop}) \qquad E_{total} = \sum (|L_{msg}| \times E_{electrical} + E_{PSEswitching} + T_{msg} \times E_{PSEactive} + E_{EOE} \times size_{msg})$$

Silicon Photonics Today

Ring modulator Radius 30µm

WDM filters 1.4mm:0.6mm=0.85mm Add, power for tuning

On-chip optical amplifier

Macroscopic: Not integrated

Optical Coupling Hand-aligned Low numbers

and they designed the

Freedor (1998)

Area 150X No active tuning Thermally stable

Nanoscale. No active tuning Thermally stable

Area 25X

Power 10X

Radius 6µm

Needed for on-chip

50x100um=0.005mm² No active feedback. accuracy is defined by fabrication.

30° temp range

Mass manufacturable III-V on Si (~50/chip) Water scale

Mass manufacturable alignment (~50) fibers) Package in presence of C4s and heatsink.

Electrical Simulator (2/2)

Channels

- □ Buffering at both ends
- Maximum wire length = side of processor core

Model Parameter	Sim Parameter	Value
$latency_{electrical}$	Router Latency	2 cycles
	Router-Router Link Latency	2 cycles
	Virtual channels	1,2,4,6
	Buffer size in flits	1,2,3,4
	Frequency	5 GHz
$bandwidth_{electrical}$	Electrical Bandwidth	640 Gb/se
$E_{electrical}$	Joules Per Electrical Hop	0.82e-12

Hybrid Simulator (2/2)

HYBRID SIMULATOR PARAMETERS

Model Parameter	Sim Parameter	Value
latency	Router Latency	2 cycles
utencyelectrical	Router-Router Link Latency	1 cycle
	Path Multiplicity	1,2,4
	Time To Timeout	2,10,20
	Frequency	5 GHz
$bandwidth_{optical}$	Optical Bandwidth	960 Gb/sec
$E_{PSESwitching}$	Joules Per PSE Switching	1.0e-12
$E_{PSEActive}$	Joules Per PSE on Per Second	1.0e-6
$E_{electrical}$	Joules Per Electrical Hop	0.82e-12
E_{EOE}	Joules Per Bit EOE ¹	0.4e-12
	•	

A

Parameter Exploration: Electrical NoC

Fig. 5. Parameter exploration results for electrical NoC. Results are for communication phases only. The energy and cycle numbers are normalized w.r.t. total buffer size of 1 case (lower is better).

Total buffer size = #vcs X buffer size \rightarrow router

Parameter Exploration: Hybrid NoC

- •Sensitive to path multiplicity
 - more available paths = less contention
- Timeouts prevent over- and under-waiting

NoC as Part of a System

- Use Merrimac FP unit numbers
- Scale to 22nm using ITRS roadmap
- Trace methodology records FP Operations
- Compare energy used in FP unit vs energy used in interconnect

